掌纹识别基于线条特征的局部三方向模式

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IET Biometrics Pub Date : 2022-07-19 DOI:10.1049/bme2.12085
Mengwen Li, Huabin Wang, Huaiyu Liu, Qianqian Meng
{"title":"掌纹识别基于线条特征的局部三方向模式","authors":"Mengwen Li,&nbsp;Huabin Wang,&nbsp;Huaiyu Liu,&nbsp;Qianqian Meng","doi":"10.1049/bme2.12085","DOIUrl":null,"url":null,"abstract":"<p>Recent researches have shown that the texture descriptor local tri-directional patterns (LTriDP) performs well in many recognition tasks. However, LTriDP cannot effectively describe the structure of palm lines, which results in poor palmprint recognition. To overcome this issue, this work proposes a modified version of LTriDP, called line feature local tri-directional patterns (LFLTriDP), which takes into account the texture features of the palmprint. First, since palmprints contain rich lines, the line features of palmprint images, including orientation and magnitude, are extracted. The line features are more robust to variations compared to the original grayscale values. Then, the directional features are encoded as tri-directional patterns. The tri-directional patterns reflect the direction changes in the local area. Finally, the LFLTriDP features are constructed by the tri-directional patterns, orientation and magnitude features. The LFLTriDP features effectively describe the structure of palm lines. Considering that most palm lines are curved, we use the concavity as supplementary information. The concavity of each pixel is obtained using the Banana filter and all pixels are grouped into two categories. The LFLTriDP features are refined to generate two feature vectors by the concavity to enhance the discriminability. The matching scores of the two feature vectors are weighted differently in the matching stage to reduce intra-class distance and increase inter-class distance. Experiments on PolyU, PolyU Multi-spectral, Tongji, CASIA and IITD palmprint databases show that LFLTriDP achieves promising recognition performance.</p>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"11 6","pages":"570-580"},"PeriodicalIF":1.8000,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12085","citationCount":"2","resultStr":"{\"title\":\"Palmprint recognition based on the line feature local tri-directional patterns\",\"authors\":\"Mengwen Li,&nbsp;Huabin Wang,&nbsp;Huaiyu Liu,&nbsp;Qianqian Meng\",\"doi\":\"10.1049/bme2.12085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent researches have shown that the texture descriptor local tri-directional patterns (LTriDP) performs well in many recognition tasks. However, LTriDP cannot effectively describe the structure of palm lines, which results in poor palmprint recognition. To overcome this issue, this work proposes a modified version of LTriDP, called line feature local tri-directional patterns (LFLTriDP), which takes into account the texture features of the palmprint. First, since palmprints contain rich lines, the line features of palmprint images, including orientation and magnitude, are extracted. The line features are more robust to variations compared to the original grayscale values. Then, the directional features are encoded as tri-directional patterns. The tri-directional patterns reflect the direction changes in the local area. Finally, the LFLTriDP features are constructed by the tri-directional patterns, orientation and magnitude features. The LFLTriDP features effectively describe the structure of palm lines. Considering that most palm lines are curved, we use the concavity as supplementary information. The concavity of each pixel is obtained using the Banana filter and all pixels are grouped into two categories. The LFLTriDP features are refined to generate two feature vectors by the concavity to enhance the discriminability. The matching scores of the two feature vectors are weighted differently in the matching stage to reduce intra-class distance and increase inter-class distance. Experiments on PolyU, PolyU Multi-spectral, Tongji, CASIA and IITD palmprint databases show that LFLTriDP achieves promising recognition performance.</p>\",\"PeriodicalId\":48821,\"journal\":{\"name\":\"IET Biometrics\",\"volume\":\"11 6\",\"pages\":\"570-580\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12085\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Biometrics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/bme2.12085\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Biometrics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bme2.12085","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2

摘要

近年来的研究表明,纹理描述子局部三向模式(LTriDP)在许多识别任务中都有很好的表现。然而,LTriDP不能有效地描述掌纹结构,导致掌纹识别效果不佳。为了克服这个问题,本研究提出了一种LTriDP的改进版本,称为线特征局部三向模式(LFLTriDP),它考虑了掌纹的纹理特征。首先,由于掌纹包含丰富的线条,提取掌纹图像的线条特征,包括方向和大小;与原始灰度值相比,线特征对变化具有更强的鲁棒性。然后,将方向特征编码为三方向模式。三向模式反映了局部区域的方向变化。最后,利用三方向特征、方向特征和幅度特征构建了LFLTriDP特征。LFLTriDP特征有效地描述了手掌线条的结构。考虑到大多数手掌线条是弯曲的,我们使用凹凸度作为补充信息。使用Banana滤波器获得每个像素的凹凸度,并将所有像素分为两类。通过对LFLTriDP特征的凹度进行细化,生成两个特征向量,提高了识别能力。在匹配阶段对两个特征向量的匹配分数进行不同的加权,以减小类内距离,增大类间距离。在PolyU、PolyU多光谱、同济、CASIA和IITD掌纹数据库上的实验表明,LFLTriDP具有良好的识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Palmprint recognition based on the line feature local tri-directional patterns

Recent researches have shown that the texture descriptor local tri-directional patterns (LTriDP) performs well in many recognition tasks. However, LTriDP cannot effectively describe the structure of palm lines, which results in poor palmprint recognition. To overcome this issue, this work proposes a modified version of LTriDP, called line feature local tri-directional patterns (LFLTriDP), which takes into account the texture features of the palmprint. First, since palmprints contain rich lines, the line features of palmprint images, including orientation and magnitude, are extracted. The line features are more robust to variations compared to the original grayscale values. Then, the directional features are encoded as tri-directional patterns. The tri-directional patterns reflect the direction changes in the local area. Finally, the LFLTriDP features are constructed by the tri-directional patterns, orientation and magnitude features. The LFLTriDP features effectively describe the structure of palm lines. Considering that most palm lines are curved, we use the concavity as supplementary information. The concavity of each pixel is obtained using the Banana filter and all pixels are grouped into two categories. The LFLTriDP features are refined to generate two feature vectors by the concavity to enhance the discriminability. The matching scores of the two feature vectors are weighted differently in the matching stage to reduce intra-class distance and increase inter-class distance. Experiments on PolyU, PolyU Multi-spectral, Tongji, CASIA and IITD palmprint databases show that LFLTriDP achieves promising recognition performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Biometrics
IET Biometrics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
0.00%
发文量
46
审稿时长
33 weeks
期刊介绍: The field of biometric recognition - automated recognition of individuals based on their behavioural and biological characteristics - has now reached a level of maturity where viable practical applications are both possible and increasingly available. The biometrics field is characterised especially by its interdisciplinarity since, while focused primarily around a strong technological base, effective system design and implementation often requires a broad range of skills encompassing, for example, human factors, data security and database technologies, psychological and physiological awareness, and so on. Also, the technology focus itself embraces diversity, since the engineering of effective biometric systems requires integration of image analysis, pattern recognition, sensor technology, database engineering, security design and many other strands of understanding. The scope of the journal is intentionally relatively wide. While focusing on core technological issues, it is recognised that these may be inherently diverse and in many cases may cross traditional disciplinary boundaries. The scope of the journal will therefore include any topics where it can be shown that a paper can increase our understanding of biometric systems, signal future developments and applications for biometrics, or promote greater practical uptake for relevant technologies: Development and enhancement of individual biometric modalities including the established and traditional modalities (e.g. face, fingerprint, iris, signature and handwriting recognition) and also newer or emerging modalities (gait, ear-shape, neurological patterns, etc.) Multibiometrics, theoretical and practical issues, implementation of practical systems, multiclassifier and multimodal approaches Soft biometrics and information fusion for identification, verification and trait prediction Human factors and the human-computer interface issues for biometric systems, exception handling strategies Template construction and template management, ageing factors and their impact on biometric systems Usability and user-oriented design, psychological and physiological principles and system integration Sensors and sensor technologies for biometric processing Database technologies to support biometric systems Implementation of biometric systems, security engineering implications, smartcard and associated technologies in implementation, implementation platforms, system design and performance evaluation Trust and privacy issues, security of biometric systems and supporting technological solutions, biometric template protection Biometric cryptosystems, security and biometrics-linked encryption Links with forensic processing and cross-disciplinary commonalities Core underpinning technologies (e.g. image analysis, pattern recognition, computer vision, signal processing, etc.), where the specific relevance to biometric processing can be demonstrated Applications and application-led considerations Position papers on technology or on the industrial context of biometric system development Adoption and promotion of standards in biometrics, improving technology acceptance, deployment and interoperability, avoiding cross-cultural and cross-sector restrictions Relevant ethical and social issues
期刊最新文献
A Multimodal Biometric Recognition Method Based on Federated Learning Deep and Shallow Feature Fusion in Feature Score Level for Palmprint Recognition Research on TCN Model Based on SSARF Feature Selection in the Field of Human Behavior Recognition A Finger Vein Recognition Algorithm Based on the Histogram of Variable Curvature Directional Binary Statistics A Survey on Automatic Face Recognition Using Side-View Face Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1