通过重新分配依赖任务来减少周期时间和运行时再平衡

M. Yaghoubi, M. Zahedi
{"title":"通过重新分配依赖任务来减少周期时间和运行时再平衡","authors":"M. Yaghoubi, M. Zahedi","doi":"10.5829/ije.2017.30.12c.03","DOIUrl":null,"url":null,"abstract":"Business Process Management Systems (BPMS) is a complex information system that provides designing, administrating, and improving the business processes. Task allocation to human resources is one of the most important issues which should be managed more efficiently in BPMS. Task allocation algorithms are defined in order to meet the various policies of organizations. The most important of these policies could be reducing the average cycle time, balancing the resource workload, increasing the product quality and minimizing the production costs. Therefore, choosing an appropriate resource in task allocation algorithms could influence on overall policy of the organization. In heavy load conditions or when the number of human resources is limited, workload balancing can increase the stability of the system. In this paper, a task allocation algorithm is proposed to rebalance the resource workload in runtime while minimizing cycle time by offering dependent pair tasks to resources for concurrent processing. The experimental results show that the combination of previous algorithms with the proposed algorithms would have 4.42% reduction in cycle time in contrast to most efficient state-of-the-art algorithms.","PeriodicalId":14066,"journal":{"name":"International Journal of Engineering - Transactions C: Aspects","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Cycle Time Reduction and Runtime Rebalancing by Reallocating Dependent Tasks\",\"authors\":\"M. Yaghoubi, M. Zahedi\",\"doi\":\"10.5829/ije.2017.30.12c.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Business Process Management Systems (BPMS) is a complex information system that provides designing, administrating, and improving the business processes. Task allocation to human resources is one of the most important issues which should be managed more efficiently in BPMS. Task allocation algorithms are defined in order to meet the various policies of organizations. The most important of these policies could be reducing the average cycle time, balancing the resource workload, increasing the product quality and minimizing the production costs. Therefore, choosing an appropriate resource in task allocation algorithms could influence on overall policy of the organization. In heavy load conditions or when the number of human resources is limited, workload balancing can increase the stability of the system. In this paper, a task allocation algorithm is proposed to rebalance the resource workload in runtime while minimizing cycle time by offering dependent pair tasks to resources for concurrent processing. The experimental results show that the combination of previous algorithms with the proposed algorithms would have 4.42% reduction in cycle time in contrast to most efficient state-of-the-art algorithms.\",\"PeriodicalId\":14066,\"journal\":{\"name\":\"International Journal of Engineering - Transactions C: Aspects\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering - Transactions C: Aspects\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5829/ije.2017.30.12c.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering - Transactions C: Aspects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5829/ije.2017.30.12c.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5

摘要

业务流程管理系统(BPMS)是一个复杂的信息系统,提供了设计、管理和改进业务流程的功能。人力资源的任务分配是BPMS中需要更有效管理的重要问题之一。为了满足组织的各种策略,定义了任务分配算法。这些策略中最重要的可能是减少平均周期时间、平衡资源工作量、提高产品质量和最小化生产成本。因此,在任务分配算法中选择合适的资源会影响到组织的整体策略。在高负载或人力资源有限的情况下,负载均衡可以提高系统的稳定性。本文提出了一种任务分配算法,通过向资源提供依赖对任务进行并发处理,来平衡运行时的资源负载,同时最小化周期时间。实验结果表明,与最有效的最先进算法相比,将先前算法与所提出算法相结合可以减少4.42%的循环时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cycle Time Reduction and Runtime Rebalancing by Reallocating Dependent Tasks
Business Process Management Systems (BPMS) is a complex information system that provides designing, administrating, and improving the business processes. Task allocation to human resources is one of the most important issues which should be managed more efficiently in BPMS. Task allocation algorithms are defined in order to meet the various policies of organizations. The most important of these policies could be reducing the average cycle time, balancing the resource workload, increasing the product quality and minimizing the production costs. Therefore, choosing an appropriate resource in task allocation algorithms could influence on overall policy of the organization. In heavy load conditions or when the number of human resources is limited, workload balancing can increase the stability of the system. In this paper, a task allocation algorithm is proposed to rebalance the resource workload in runtime while minimizing cycle time by offering dependent pair tasks to resources for concurrent processing. The experimental results show that the combination of previous algorithms with the proposed algorithms would have 4.42% reduction in cycle time in contrast to most efficient state-of-the-art algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
29
期刊最新文献
Algorithm of Predicting Heart Attack with using Sparse Coder Predicting Service Life of Polyethylene Pipes under Crack Expansion using "Random Forest" Method Experimental Study to Evaluate Antisymmetric Reinforced Concrete Deep Beams with Openings under Concentrated Loading Using Strut and Tie Model Study on Application of Arps Decline Curves for Gas Production Forecasting in Senegal Design and Performance Analysis of 6H-SiC Metal-Semiconductor Field-Effect Transistor with Undoped and Recessed Area under Gate in 10nm Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1