输电塔结构临界状态的低频识别

K. Szopa, M. Iwaniec, A. Gołaś
{"title":"输电塔结构临界状态的低频识别","authors":"K. Szopa, M. Iwaniec, A. Gołaś","doi":"10.7494/MECH.2013.32.3.102","DOIUrl":null,"url":null,"abstract":"Transmission towers are vital parts of the overhead power line infrastructures. Any damage to these supporting structures may result in decreased load-bearing capacity and, in consequence, their collapse. Failures of transmission towers are much more severe than power failures, as they not only cause interruption to the energy supply but can also result in considerable costs of infrastructure repairs and damage. Therefore, supporting structures of overhead power lines should be subjected to structural health monitoring. This paper presents a comprehensive database containing natural frequencies and strain energies of all elements for various (simulated) damage states. On the basis of structure modal parameters, by finding the correlation between natural frequencies of damaged structure stored in the created database and natural frequencies of the structure of interest, state of the test structure can be identified. In order to verify this method, a numerical experiment was carried out. Observing the strain energy variation as compared to the undamaged state makes it possible to localize the damage and assess its importance for the further structure exploitation.","PeriodicalId":38333,"journal":{"name":"International Journal of Mechanics and Control","volume":"20 1","pages":"102"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"LOW FREQUENCY IDENTIFICATION OF CRITICAL STATES OF TRANSMISSION TOWER STRUCTURES\",\"authors\":\"K. Szopa, M. Iwaniec, A. Gołaś\",\"doi\":\"10.7494/MECH.2013.32.3.102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transmission towers are vital parts of the overhead power line infrastructures. Any damage to these supporting structures may result in decreased load-bearing capacity and, in consequence, their collapse. Failures of transmission towers are much more severe than power failures, as they not only cause interruption to the energy supply but can also result in considerable costs of infrastructure repairs and damage. Therefore, supporting structures of overhead power lines should be subjected to structural health monitoring. This paper presents a comprehensive database containing natural frequencies and strain energies of all elements for various (simulated) damage states. On the basis of structure modal parameters, by finding the correlation between natural frequencies of damaged structure stored in the created database and natural frequencies of the structure of interest, state of the test structure can be identified. In order to verify this method, a numerical experiment was carried out. Observing the strain energy variation as compared to the undamaged state makes it possible to localize the damage and assess its importance for the further structure exploitation.\",\"PeriodicalId\":38333,\"journal\":{\"name\":\"International Journal of Mechanics and Control\",\"volume\":\"20 1\",\"pages\":\"102\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanics and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/MECH.2013.32.3.102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/MECH.2013.32.3.102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

摘要

输电塔是架空电力基础设施的重要组成部分。这些支撑结构的任何损坏都可能导致承重能力下降,从而导致其倒塌。输电塔的故障比电力故障严重得多,因为它们不仅会导致能源供应中断,而且还会导致相当大的基础设施维修和损坏成本。因此,对架空电力线路的支撑结构应进行结构健康监测。本文提供了一个包含各种(模拟)损伤状态下所有单元的固有频率和应变能的综合数据库。在结构模态参数的基础上,通过建立的数据库中存储的损伤结构的固有频率与目标结构的固有频率之间的相关性,可以识别出试验结构的状态。为了验证该方法的有效性,进行了数值实验。观察与未损伤状态相比的应变能变化,可以定位损伤并评估其对进一步结构开发的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LOW FREQUENCY IDENTIFICATION OF CRITICAL STATES OF TRANSMISSION TOWER STRUCTURES
Transmission towers are vital parts of the overhead power line infrastructures. Any damage to these supporting structures may result in decreased load-bearing capacity and, in consequence, their collapse. Failures of transmission towers are much more severe than power failures, as they not only cause interruption to the energy supply but can also result in considerable costs of infrastructure repairs and damage. Therefore, supporting structures of overhead power lines should be subjected to structural health monitoring. This paper presents a comprehensive database containing natural frequencies and strain energies of all elements for various (simulated) damage states. On the basis of structure modal parameters, by finding the correlation between natural frequencies of damaged structure stored in the created database and natural frequencies of the structure of interest, state of the test structure can be identified. In order to verify this method, a numerical experiment was carried out. Observing the strain energy variation as compared to the undamaged state makes it possible to localize the damage and assess its importance for the further structure exploitation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mechanics and Control
International Journal of Mechanics and Control Engineering-Computational Mechanics
CiteScore
2.10
自引率
0.00%
发文量
0
期刊最新文献
PHYSICAL MODEL OF VEHICLE ENGINE MOUNT WITH MAGNETORHEOLOGICAL DAMPER EXPERIMENTAL INVESTIGATIONS ON ENERGY HARVESTING FROM MECHANICAL VIBRATIONS OF BUILDINGS USING MACRO FIBER COMPOSITE THE APPLICATION OF SELF-EXCITED VIBRATIONS FOR DYNAMIC STRAIN MEASUREMENTS CARRIED OUT BY VIBRATING WIRE TENSOMETERS Complete kinematic analysis of the Stewart-Gough platform by unit quaternions TEST BED FOR THE SIMULATION OF MAGNETIC FIELD MEASUREMENTS OF LOW EARTH ORBIT SATELLITES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1