Langmuir细菌-脂质单层的分子相互作用、弹性性质和纳米结构:解决细菌膜不对称之谜

IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Current Opinion in Colloid & Interface Science Pub Date : 2023-10-01 DOI:10.1016/j.cocis.2023.101731
Xueying Guo, Wuge H. Briscoe
{"title":"Langmuir细菌-脂质单层的分子相互作用、弹性性质和纳米结构:解决细菌膜不对称之谜","authors":"Xueying Guo,&nbsp;Wuge H. Briscoe","doi":"10.1016/j.cocis.2023.101731","DOIUrl":null,"url":null,"abstract":"<div><p>The membrane of Gram-negative bacteria (GNB) is especially robust due to the additional, unique, highly asymmetric outer membrane, with lipopolysaccharides (LPSs) as the main component. This LPS layer serves as a protective barrier against antibiotics, host immune responses, and other environmental stresses. However, constructing model membranes containing LPS that capture the structural asymmetry for fundamental studies of the GNB cell wall remains an open challenge. In this context, we discuss how recent physicochemical studies of Langmuir monolayers incorporating LPS help us better understand the elastic properties and structural integrity of model LPS bacterial membranes. The classic Langmuir–Blodgett trough has been used to reveal different lipid phase behaviors of monolayers containing LPS mutants with different molecular architectures to mimic the outer leaflet of the GNB outer membrane, shedding light on the underpinning molecular interactions. Permeation and penetration of antimicrobial peptides are shown to alter the viscoelastic properties of LPS monolayers. The LPS-containing Langmuir monolayer can also be transferred to a substrate as the outer leaflet of an asymmetric solid-supported bilayer, and we will discuss the limitations and potential optimization of this method. Finally, we highlight how different physicochemical methods can corroborate and contribute to unravelling the structural characteristics of model bacterial membranes.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359029423000560/pdfft?md5=d971da95ccef293402e28fd1d314cb7a&pid=1-s2.0-S1359029423000560-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Molecular interactions, elastic properties, and nanostructure of Langmuir bacterial-lipid monolayers: Towards solving the mystery in bacterial membrane asymmetry\",\"authors\":\"Xueying Guo,&nbsp;Wuge H. Briscoe\",\"doi\":\"10.1016/j.cocis.2023.101731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The membrane of Gram-negative bacteria (GNB) is especially robust due to the additional, unique, highly asymmetric outer membrane, with lipopolysaccharides (LPSs) as the main component. This LPS layer serves as a protective barrier against antibiotics, host immune responses, and other environmental stresses. However, constructing model membranes containing LPS that capture the structural asymmetry for fundamental studies of the GNB cell wall remains an open challenge. In this context, we discuss how recent physicochemical studies of Langmuir monolayers incorporating LPS help us better understand the elastic properties and structural integrity of model LPS bacterial membranes. The classic Langmuir–Blodgett trough has been used to reveal different lipid phase behaviors of monolayers containing LPS mutants with different molecular architectures to mimic the outer leaflet of the GNB outer membrane, shedding light on the underpinning molecular interactions. Permeation and penetration of antimicrobial peptides are shown to alter the viscoelastic properties of LPS monolayers. The LPS-containing Langmuir monolayer can also be transferred to a substrate as the outer leaflet of an asymmetric solid-supported bilayer, and we will discuss the limitations and potential optimization of this method. Finally, we highlight how different physicochemical methods can corroborate and contribute to unravelling the structural characteristics of model bacterial membranes.</p></div>\",\"PeriodicalId\":293,\"journal\":{\"name\":\"Current Opinion in Colloid & Interface Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1359029423000560/pdfft?md5=d971da95ccef293402e28fd1d314cb7a&pid=1-s2.0-S1359029423000560-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Colloid & Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359029423000560\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359029423000560","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

革兰氏阴性菌(GNB)的膜特别坚固,这是由于额外的、独特的、高度不对称的外膜,以脂多糖(lps)为主要成分。这种脂多糖层作为抗抗生素、宿主免疫反应和其他环境应激的保护屏障。然而,为GNB细胞壁的基础研究构建包含LPS的模型膜以捕获结构不对称性仍然是一个开放的挑战。在此背景下,我们讨论了最近对Langmuir单层脂多糖的物理化学研究如何帮助我们更好地理解模型脂多糖细菌膜的弹性特性和结构完整性。经典的Langmuir-Blodgett槽被用来揭示含有不同分子结构的LPS突变体的单层的不同脂质相行为,以模拟GNB外膜的外小叶,揭示基础分子相互作用。抗菌肽的渗透和渗透可以改变LPS单层膜的粘弹性。含有lps的Langmuir单层也可以作为不对称固体支撑双层的外层叶转移到衬底上,我们将讨论这种方法的局限性和潜在的优化。最后,我们强调了不同的物理化学方法如何证实并有助于揭示模型细菌膜的结构特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular interactions, elastic properties, and nanostructure of Langmuir bacterial-lipid monolayers: Towards solving the mystery in bacterial membrane asymmetry

The membrane of Gram-negative bacteria (GNB) is especially robust due to the additional, unique, highly asymmetric outer membrane, with lipopolysaccharides (LPSs) as the main component. This LPS layer serves as a protective barrier against antibiotics, host immune responses, and other environmental stresses. However, constructing model membranes containing LPS that capture the structural asymmetry for fundamental studies of the GNB cell wall remains an open challenge. In this context, we discuss how recent physicochemical studies of Langmuir monolayers incorporating LPS help us better understand the elastic properties and structural integrity of model LPS bacterial membranes. The classic Langmuir–Blodgett trough has been used to reveal different lipid phase behaviors of monolayers containing LPS mutants with different molecular architectures to mimic the outer leaflet of the GNB outer membrane, shedding light on the underpinning molecular interactions. Permeation and penetration of antimicrobial peptides are shown to alter the viscoelastic properties of LPS monolayers. The LPS-containing Langmuir monolayer can also be transferred to a substrate as the outer leaflet of an asymmetric solid-supported bilayer, and we will discuss the limitations and potential optimization of this method. Finally, we highlight how different physicochemical methods can corroborate and contribute to unravelling the structural characteristics of model bacterial membranes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.50
自引率
1.10%
发文量
74
审稿时长
11.3 weeks
期刊介绍: Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications. Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments. Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.
期刊最新文献
A critical examination of the physics behind the formation of particle-laden fluid interfaces Protorheology in practice: Avoiding misinterpretation Rheological effects of rough colloids at fluid interfaces: An overview Non-fused and fused ring non-fullerene acceptors The rise and potential of top interface modification in tin halide perovskite solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1