基于三维卷积神经网络的非人灵长类动物硬膜外脑电双手脑机接口运动状态分类

Hoseok Choi, Jeyeon Lee, Jinsick Park, B. Cho, K. Lee, D. Jang
{"title":"基于三维卷积神经网络的非人灵长类动物硬膜外脑电双手脑机接口运动状态分类","authors":"Hoseok Choi, Jeyeon Lee, Jinsick Park, B. Cho, K. Lee, D. Jang","doi":"10.1109/IWW-BCI.2018.8311534","DOIUrl":null,"url":null,"abstract":"During bimanual movement, brain state is known to be different from the unimanual movement. Thus the conventional arm movement classifier for unimanual arm movement decoding method seems to be insufficient to decode bimanual movement. In this research, we suggested the convolutional neural network (CNN) for movement state classification to improve the decoding accuracy for bimanual movement estimation. We recorded the monkey's cortical signal while the bimanual task, and convert to spectrogram dataset for decoding. To evaluate the CNN, we stacked several layers for deep structure and figured out the best configuration. As a result, this method showed improved the arm movement state classification performance for bimanual tasks. This technique could be applied to arm movement brain computer interfaces (BCIs) in real world and the various neuro-prosthetics fields.","PeriodicalId":6537,"journal":{"name":"2018 6th International Conference on Brain-Computer Interface (BCI)","volume":"29 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Movement state classification for bimanual BCI from non-human primate's epidural ECoG using three-dimensional convolutional neural network\",\"authors\":\"Hoseok Choi, Jeyeon Lee, Jinsick Park, B. Cho, K. Lee, D. Jang\",\"doi\":\"10.1109/IWW-BCI.2018.8311534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During bimanual movement, brain state is known to be different from the unimanual movement. Thus the conventional arm movement classifier for unimanual arm movement decoding method seems to be insufficient to decode bimanual movement. In this research, we suggested the convolutional neural network (CNN) for movement state classification to improve the decoding accuracy for bimanual movement estimation. We recorded the monkey's cortical signal while the bimanual task, and convert to spectrogram dataset for decoding. To evaluate the CNN, we stacked several layers for deep structure and figured out the best configuration. As a result, this method showed improved the arm movement state classification performance for bimanual tasks. This technique could be applied to arm movement brain computer interfaces (BCIs) in real world and the various neuro-prosthetics fields.\",\"PeriodicalId\":6537,\"journal\":{\"name\":\"2018 6th International Conference on Brain-Computer Interface (BCI)\",\"volume\":\"29 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 6th International Conference on Brain-Computer Interface (BCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWW-BCI.2018.8311534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2018.8311534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在双手运动时,大脑状态与单手运动时不同。因此,传统的用于单手手臂动作解码方法的手臂动作分类器似乎不足以解码双手动作。在本研究中,我们提出了卷积神经网络(CNN)的运动状态分类,以提高人工运动估计的解码精度。我们记录了猴子在手工操作时的皮层信号,并将其转换为频谱图数据集进行解码。为了评估CNN,我们堆叠了几层深层结构,并找出了最佳配置。结果表明,该方法在手动任务中具有较好的手臂运动状态分类性能。该技术可应用于现实生活中的手臂运动脑机接口和各种神经修复领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Movement state classification for bimanual BCI from non-human primate's epidural ECoG using three-dimensional convolutional neural network
During bimanual movement, brain state is known to be different from the unimanual movement. Thus the conventional arm movement classifier for unimanual arm movement decoding method seems to be insufficient to decode bimanual movement. In this research, we suggested the convolutional neural network (CNN) for movement state classification to improve the decoding accuracy for bimanual movement estimation. We recorded the monkey's cortical signal while the bimanual task, and convert to spectrogram dataset for decoding. To evaluate the CNN, we stacked several layers for deep structure and figured out the best configuration. As a result, this method showed improved the arm movement state classification performance for bimanual tasks. This technique could be applied to arm movement brain computer interfaces (BCIs) in real world and the various neuro-prosthetics fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Embodied cognition Design of a brain-controlled robot arm system based on upper-limb movement imagery Applying deep-learning to a top-down SSVEP BMI BCI classification using locally generated CSP features Evaluation of outlier prevalence of density distribution in brain computed tomography: Comparison of kurtosis and quartile statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1