基于集成袋装树和进化优化算法的时域结构损伤识别

S. H. Mahdavi, Chao Xu
{"title":"基于集成袋装树和进化优化算法的时域结构损伤识别","authors":"S. H. Mahdavi, Chao Xu","doi":"10.1155/2023/6321012","DOIUrl":null,"url":null,"abstract":"This paper presents a two-step vibration-based strategy for damage identification of framed structures using ensemble bagged trees known as a well-known supervised machine learning (ML) paradigm in conjunction with evolutionary optimization algorithms. The proposed model incorporates the actual response, wavelet coefficients, and wavelet energy to extract damage-sensitive features from the time-domain of the measured and simulated signals. Unlike available studies in this scope, the key objective of this research is to identify damage with a localization precision down to a single structural member, rather than limiting the evaluation to the group of elements. In order to increase the training performance in contributing to extremely large datasets with numerous class labels, the proposed strategy involves the artificial generation of features. Additionally, a modified genetic algorithm is proposed for fast damage localization. It is deduced that the damage locations are confidently detected within a fast computational time. Subsequently, damage identification is followed by the application of evolutionary optimization algorithms. For comparison purpose, the employment of the water cycle optimization algorithm (WCA) is comparatively investigated with the other three state-of-the-art optimizers, i.e., particle swarm optimization (PSO), imperialist competitive algorithm (ICA), and differential evolution algorithm (DE). The numerical and experimental validation studies evidence satisfactorily reliable identification results with no false detection in dealing with multiple damage scenarios in large-scale and real-world applications. It is concluded that developing the most damage-sensitive features and using the proposed data fusion strategy lead to informative features with a reasonably small size and significantly improve the ML performance.","PeriodicalId":22049,"journal":{"name":"Structural Control and Health Monitoring","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-Domain Structural Damage Identification Using Ensemble Bagged Trees and Evolutionary Optimization Algorithms\",\"authors\":\"S. H. Mahdavi, Chao Xu\",\"doi\":\"10.1155/2023/6321012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a two-step vibration-based strategy for damage identification of framed structures using ensemble bagged trees known as a well-known supervised machine learning (ML) paradigm in conjunction with evolutionary optimization algorithms. The proposed model incorporates the actual response, wavelet coefficients, and wavelet energy to extract damage-sensitive features from the time-domain of the measured and simulated signals. Unlike available studies in this scope, the key objective of this research is to identify damage with a localization precision down to a single structural member, rather than limiting the evaluation to the group of elements. In order to increase the training performance in contributing to extremely large datasets with numerous class labels, the proposed strategy involves the artificial generation of features. Additionally, a modified genetic algorithm is proposed for fast damage localization. It is deduced that the damage locations are confidently detected within a fast computational time. Subsequently, damage identification is followed by the application of evolutionary optimization algorithms. For comparison purpose, the employment of the water cycle optimization algorithm (WCA) is comparatively investigated with the other three state-of-the-art optimizers, i.e., particle swarm optimization (PSO), imperialist competitive algorithm (ICA), and differential evolution algorithm (DE). The numerical and experimental validation studies evidence satisfactorily reliable identification results with no false detection in dealing with multiple damage scenarios in large-scale and real-world applications. It is concluded that developing the most damage-sensitive features and using the proposed data fusion strategy lead to informative features with a reasonably small size and significantly improve the ML performance.\",\"PeriodicalId\":22049,\"journal\":{\"name\":\"Structural Control and Health Monitoring\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control and Health Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6321012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control and Health Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6321012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于振动的两步框架结构损伤识别策略,该策略使用了众所周知的监督机器学习(ML)范式,并结合了进化优化算法。该模型结合了实际响应、小波系数和小波能量,从测量和模拟信号的时域中提取损伤敏感特征。与这一领域的现有研究不同,本研究的关键目标是将损伤定位精度降低到单个结构成员,而不是将评估限制在一组元素上。为了在具有大量类标签的超大数据集上提高训练性能,所提出的策略涉及人工生成特征。此外,提出了一种改进的遗传算法,用于快速定位损伤。在较短的计算时间内确定了损伤位置。随后,采用进化优化算法进行损伤识别。为了进行比较,将水循环优化算法(WCA)与其他三种最先进的优化算法,即粒子群优化算法(PSO)、帝国主义竞争算法(ICA)和差分进化算法(DE)的使用进行了比较研究。数值和实验验证研究表明,在处理大规模和实际应用中的多种损伤场景时,识别结果令人满意,可靠且无误检。研究结果表明,开发对损伤最敏感的特征并使用所提出的数据融合策略,可以获得具有合理小尺寸的信息特征,并显着提高机器学习性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Time-Domain Structural Damage Identification Using Ensemble Bagged Trees and Evolutionary Optimization Algorithms
This paper presents a two-step vibration-based strategy for damage identification of framed structures using ensemble bagged trees known as a well-known supervised machine learning (ML) paradigm in conjunction with evolutionary optimization algorithms. The proposed model incorporates the actual response, wavelet coefficients, and wavelet energy to extract damage-sensitive features from the time-domain of the measured and simulated signals. Unlike available studies in this scope, the key objective of this research is to identify damage with a localization precision down to a single structural member, rather than limiting the evaluation to the group of elements. In order to increase the training performance in contributing to extremely large datasets with numerous class labels, the proposed strategy involves the artificial generation of features. Additionally, a modified genetic algorithm is proposed for fast damage localization. It is deduced that the damage locations are confidently detected within a fast computational time. Subsequently, damage identification is followed by the application of evolutionary optimization algorithms. For comparison purpose, the employment of the water cycle optimization algorithm (WCA) is comparatively investigated with the other three state-of-the-art optimizers, i.e., particle swarm optimization (PSO), imperialist competitive algorithm (ICA), and differential evolution algorithm (DE). The numerical and experimental validation studies evidence satisfactorily reliable identification results with no false detection in dealing with multiple damage scenarios in large-scale and real-world applications. It is concluded that developing the most damage-sensitive features and using the proposed data fusion strategy lead to informative features with a reasonably small size and significantly improve the ML performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Damage Detection and Localization at the Jacket Support of an Offshore Wind Turbine Using Transformer Models A Model-Based Bayesian Inference Approach for On-Board Monitoring of Rail Roughness Profiles: Application on Field Measurement Data of the Swiss Federal Railways Network Correction of Misalignment Errors in the Integrated GNSS and Accelerometer System for Structural Displacement Monitoring Mitigation of In-Plane Vibrations in Large-Scale Wind Turbine Blades with a Track Tuned Mass Damper Vortex-Induced Force Identification of a Long-Span Bridge Based on Field Measurement Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1