机械化学合成糠醛与丙酮缩合LiAlOx催化剂

L. N. Stepanova, R. Mironenko, O. Belskaya, V. Likholobov
{"title":"机械化学合成糠醛与丙酮缩合LiAlOx催化剂","authors":"L. N. Stepanova, R. Mironenko, O. Belskaya, V. Likholobov","doi":"10.1515/cse-2017-0003","DOIUrl":null,"url":null,"abstract":"Abstract In the present study, the mechanochemical method is proposed for synthesis of LiAl-layered double hydroxides (LDHs). This method is eco-friendly and allows obtaining LiAl-LDH under relatively mild conditions (centripetal acceleration of milling bodies 300 m s-2) and in a short period of time (15 minutes). The structures of as-prepared LiAl-LDH, LiAl-mixed oxide (calcined LDH) and “activated” LiAl-LDH obtained after rehydration of the corresponding mixed oxide were confirmed by X-ray diffraction. The basicity of LiAlOx was measured by temperature-programmed desorption of CO2 and double isotherm technique. According to data obtained, LiAl-mixed oxide has a significant higher carbon dioxide adsorption capacity compared to MgAlmixed oxides prepared by conventional co-precipitation method. This indicates a large amount of basic surface sites with different strength (strong, medium and weak) for Li-containing systems. The formation of “activated” LiAl-LDH having Bronsted basic sites (OH groups in the interlayer space) provides an increased catalytic activity of LiAlOx in the reaction of aqueous-phase aldol condensation between furfural and acetone.","PeriodicalId":9642,"journal":{"name":"Catalysis for Sustainable Energy","volume":"1 1","pages":"16 - 8"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mechanochemically synthesized LiAlOx catalyst for aqueous aldol condensation of furfural with acetone\",\"authors\":\"L. N. Stepanova, R. Mironenko, O. Belskaya, V. Likholobov\",\"doi\":\"10.1515/cse-2017-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the present study, the mechanochemical method is proposed for synthesis of LiAl-layered double hydroxides (LDHs). This method is eco-friendly and allows obtaining LiAl-LDH under relatively mild conditions (centripetal acceleration of milling bodies 300 m s-2) and in a short period of time (15 minutes). The structures of as-prepared LiAl-LDH, LiAl-mixed oxide (calcined LDH) and “activated” LiAl-LDH obtained after rehydration of the corresponding mixed oxide were confirmed by X-ray diffraction. The basicity of LiAlOx was measured by temperature-programmed desorption of CO2 and double isotherm technique. According to data obtained, LiAl-mixed oxide has a significant higher carbon dioxide adsorption capacity compared to MgAlmixed oxides prepared by conventional co-precipitation method. This indicates a large amount of basic surface sites with different strength (strong, medium and weak) for Li-containing systems. The formation of “activated” LiAl-LDH having Bronsted basic sites (OH groups in the interlayer space) provides an increased catalytic activity of LiAlOx in the reaction of aqueous-phase aldol condensation between furfural and acetone.\",\"PeriodicalId\":9642,\"journal\":{\"name\":\"Catalysis for Sustainable Energy\",\"volume\":\"1 1\",\"pages\":\"16 - 8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis for Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cse-2017-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis for Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cse-2017-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

摘要:本研究采用机械化学方法合成lial层状双氢氧化物(LDHs)。这种方法是环保的,可以在相对温和的条件下(铣削体的向心加速度为300 m s-2)和较短的时间内(15分钟)获得LiAl-LDH。用x射线衍射证实了所制备的LiAl-LDH、lial -混合氧化物(煅烧的LDH)和相应混合氧化物再水化后得到的活化的LiAl-LDH的结构。采用程序升温解吸法和双等温线法测定了LiAlOx的碱度。结果表明,与常规共沉淀法制备的mgalo混合氧化物相比,lial混合氧化物对二氧化碳的吸附能力显著提高。这表明在含锂体系中存在大量不同强度(强、中、弱)的基本表面位点。具有Bronsted碱基(层间空间中的OH基团)的活化LiAl-LDH的形成使LiAlOx在糠醛和丙酮之间的水相醛醇缩合反应中的催化活性增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanochemically synthesized LiAlOx catalyst for aqueous aldol condensation of furfural with acetone
Abstract In the present study, the mechanochemical method is proposed for synthesis of LiAl-layered double hydroxides (LDHs). This method is eco-friendly and allows obtaining LiAl-LDH under relatively mild conditions (centripetal acceleration of milling bodies 300 m s-2) and in a short period of time (15 minutes). The structures of as-prepared LiAl-LDH, LiAl-mixed oxide (calcined LDH) and “activated” LiAl-LDH obtained after rehydration of the corresponding mixed oxide were confirmed by X-ray diffraction. The basicity of LiAlOx was measured by temperature-programmed desorption of CO2 and double isotherm technique. According to data obtained, LiAl-mixed oxide has a significant higher carbon dioxide adsorption capacity compared to MgAlmixed oxides prepared by conventional co-precipitation method. This indicates a large amount of basic surface sites with different strength (strong, medium and weak) for Li-containing systems. The formation of “activated” LiAl-LDH having Bronsted basic sites (OH groups in the interlayer space) provides an increased catalytic activity of LiAlOx in the reaction of aqueous-phase aldol condensation between furfural and acetone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A study of fast pyrolysis of plant biomass assisted by the conversion of volatile products using Fe(Co, Ni)/ZSM-5 catalysts Solid-Solutions as Supports and Robust Photocatalysts and Electrocatalysts: A Review Alkali Lignin Catalytic Hydrogenolysis with Biofuel Production Hydrogen Production from Catalytic Polyethylene Terephthalate Waste Reforming Reaction, an overview Hydrogen-Free Deoxygenation of Bio-Oil Model Compounds over Sulfur-Free Polymer Supported Catalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1