Jongyeong Kim, Yongju Kwon, B. Kang, Joowon Choi, S. Kwon
{"title":"台风“欣纳摩”期间韩国沿海地区高层建筑周围的摩天大楼风分析","authors":"Jongyeong Kim, Yongju Kwon, B. Kang, Joowon Choi, S. Kwon","doi":"10.3390/wind3010005","DOIUrl":null,"url":null,"abstract":"High-rise buildings in cities adversely affect wind regimes by changing the air currents in their surrounding areas. In particular, extreme climate phenomena caused by climate change are stronger and more frequent, causing damage in cities. To better understand skyscraper wind behaviors around high-rise buildings, actual measurements are necessary to determine the environmental assessment of the wind effect. In this study, field measurements were performed with five anemometers at five points in the vicinity of a skyscraper called the LCT residential complex (411.6 m tall) surrounded by high-rise buildings in the coastal city of Busan, South Korea during Typhoon Hinnamnor. The gust was 3.7 times stronger, while the maximum 1-min mean wind speed was 3.1 times stronger than those measured at a nearby reference weather station operated by the Korean Meteorological Administration. The characteristics of downward and canyon winds were shown to depend on the spatiotemporal characteristics of the five points. The turbulence intensity declined as the wind speed increased and converged to a certain value. The gust factor also dropped as the wind speed increased and converged to 2.0, and was considered to be the parameter that best represents the intensity of instantaneous gust caused by the skyscraper wind effect. These results suggest that high-rise buildings should be designed with the consideration of gusts twice as strong as the average wind speed. In addition, field measurements should be accompanied in order to respond to the skyscraper wind effect.","PeriodicalId":51210,"journal":{"name":"Wind and Structures","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the Skyscraper Wind around High-Rise Buildings in Coastal Region, South Korea, during Typhoon ‘Hinnamnor’\",\"authors\":\"Jongyeong Kim, Yongju Kwon, B. Kang, Joowon Choi, S. Kwon\",\"doi\":\"10.3390/wind3010005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-rise buildings in cities adversely affect wind regimes by changing the air currents in their surrounding areas. In particular, extreme climate phenomena caused by climate change are stronger and more frequent, causing damage in cities. To better understand skyscraper wind behaviors around high-rise buildings, actual measurements are necessary to determine the environmental assessment of the wind effect. In this study, field measurements were performed with five anemometers at five points in the vicinity of a skyscraper called the LCT residential complex (411.6 m tall) surrounded by high-rise buildings in the coastal city of Busan, South Korea during Typhoon Hinnamnor. The gust was 3.7 times stronger, while the maximum 1-min mean wind speed was 3.1 times stronger than those measured at a nearby reference weather station operated by the Korean Meteorological Administration. The characteristics of downward and canyon winds were shown to depend on the spatiotemporal characteristics of the five points. The turbulence intensity declined as the wind speed increased and converged to a certain value. The gust factor also dropped as the wind speed increased and converged to 2.0, and was considered to be the parameter that best represents the intensity of instantaneous gust caused by the skyscraper wind effect. These results suggest that high-rise buildings should be designed with the consideration of gusts twice as strong as the average wind speed. In addition, field measurements should be accompanied in order to respond to the skyscraper wind effect.\",\"PeriodicalId\":51210,\"journal\":{\"name\":\"Wind and Structures\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/wind3010005\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/wind3010005","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Analysis of the Skyscraper Wind around High-Rise Buildings in Coastal Region, South Korea, during Typhoon ‘Hinnamnor’
High-rise buildings in cities adversely affect wind regimes by changing the air currents in their surrounding areas. In particular, extreme climate phenomena caused by climate change are stronger and more frequent, causing damage in cities. To better understand skyscraper wind behaviors around high-rise buildings, actual measurements are necessary to determine the environmental assessment of the wind effect. In this study, field measurements were performed with five anemometers at five points in the vicinity of a skyscraper called the LCT residential complex (411.6 m tall) surrounded by high-rise buildings in the coastal city of Busan, South Korea during Typhoon Hinnamnor. The gust was 3.7 times stronger, while the maximum 1-min mean wind speed was 3.1 times stronger than those measured at a nearby reference weather station operated by the Korean Meteorological Administration. The characteristics of downward and canyon winds were shown to depend on the spatiotemporal characteristics of the five points. The turbulence intensity declined as the wind speed increased and converged to a certain value. The gust factor also dropped as the wind speed increased and converged to 2.0, and was considered to be the parameter that best represents the intensity of instantaneous gust caused by the skyscraper wind effect. These results suggest that high-rise buildings should be designed with the consideration of gusts twice as strong as the average wind speed. In addition, field measurements should be accompanied in order to respond to the skyscraper wind effect.
期刊介绍:
The WIND AND STRUCTURES, An International Journal, aims at: - Major publication channel for research in the general area of wind and structural engineering, - Wider distribution at more affordable subscription rates; - Faster reviewing and publication for manuscripts submitted.
The main theme of the Journal is the wind effects on structures. Areas covered by the journal include:
Wind loads and structural response,
Bluff-body aerodynamics,
Computational method,
Wind tunnel modeling,
Local wind environment,
Codes and regulations,
Wind effects on large scale structures.