{"title":"离子注入引入的三维FinFET掺杂谱模拟及其对器件性能的影响","authors":"Liping Wang, A. Brown, B. Cheng, A. Asenov","doi":"10.1109/IIT.2014.6940008","DOIUrl":null,"url":null,"abstract":"A simulation program, Anadope3D, developed to model ion implantations in FinFETs based on quasi-analytic methods, has been improved to include a set of analytical implantation models based on a Pearson distribution function, which is concise and computationally efficient. This C++ module has been integrated into the GSS atomistic device simulator GARAND, which enables more realistic doping distributions arising from ion implantation to be used for TCAD FinFET simulations. Simulations are performed on an example of an SOI FinFET with physical gate length of 20nm, including statistical simulations with Random Discrete Dopants (RDD). The impact of the realistic 3D doping profile on FinFET performance has been investigated.","PeriodicalId":6548,"journal":{"name":"2014 20th International Conference on Ion Implantation Technology (IIT)","volume":"72 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of 3D FinFET doping profiles introduced by ion implantation and the impact on device performance\",\"authors\":\"Liping Wang, A. Brown, B. Cheng, A. Asenov\",\"doi\":\"10.1109/IIT.2014.6940008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simulation program, Anadope3D, developed to model ion implantations in FinFETs based on quasi-analytic methods, has been improved to include a set of analytical implantation models based on a Pearson distribution function, which is concise and computationally efficient. This C++ module has been integrated into the GSS atomistic device simulator GARAND, which enables more realistic doping distributions arising from ion implantation to be used for TCAD FinFET simulations. Simulations are performed on an example of an SOI FinFET with physical gate length of 20nm, including statistical simulations with Random Discrete Dopants (RDD). The impact of the realistic 3D doping profile on FinFET performance has been investigated.\",\"PeriodicalId\":6548,\"journal\":{\"name\":\"2014 20th International Conference on Ion Implantation Technology (IIT)\",\"volume\":\"72 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 20th International Conference on Ion Implantation Technology (IIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIT.2014.6940008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 20th International Conference on Ion Implantation Technology (IIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIT.2014.6940008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation of 3D FinFET doping profiles introduced by ion implantation and the impact on device performance
A simulation program, Anadope3D, developed to model ion implantations in FinFETs based on quasi-analytic methods, has been improved to include a set of analytical implantation models based on a Pearson distribution function, which is concise and computationally efficient. This C++ module has been integrated into the GSS atomistic device simulator GARAND, which enables more realistic doping distributions arising from ion implantation to be used for TCAD FinFET simulations. Simulations are performed on an example of an SOI FinFET with physical gate length of 20nm, including statistical simulations with Random Discrete Dopants (RDD). The impact of the realistic 3D doping profile on FinFET performance has been investigated.