{"title":"人在工程构型设计中的熟练程度计算模型","authors":"Ethan Brownell, J. Cagan, K. Kotovsky","doi":"10.1115/1.4062861","DOIUrl":null,"url":null,"abstract":"\n This work introduces the Proficient Simulated Annealing Design Agent Model (PSADA), a cognitively inspired, agent-based model of engineering configuration design. PSADA models different proficiency agents using move selection heuristics and problem space search strategies, both of which are identified and extracted from prior human subject studies. The model is validated with two design problems. Agents are compared to human designers and show the accurate simulation of the behaviors of the different proficiency designers. These behavior differences lead to significantly different performance levels, matching the human performance levels with just one exception. These validated heterogeneous agents are placed into teams and confirmed previous findings that the most proficient member of a configuration design team has the largest impact (positive or negative) on team performance. The PSADA model is introduced as a scalable platform to further explore configuration design proficiency's role in design team performance and organizational behavior.","PeriodicalId":50137,"journal":{"name":"Journal of Mechanical Design","volume":"1 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A COMPUTATIONAL MODEL OF HUMAN PROFICIENCY IN ENGINEERING CONFIGURATION DESIGN\",\"authors\":\"Ethan Brownell, J. Cagan, K. Kotovsky\",\"doi\":\"10.1115/1.4062861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This work introduces the Proficient Simulated Annealing Design Agent Model (PSADA), a cognitively inspired, agent-based model of engineering configuration design. PSADA models different proficiency agents using move selection heuristics and problem space search strategies, both of which are identified and extracted from prior human subject studies. The model is validated with two design problems. Agents are compared to human designers and show the accurate simulation of the behaviors of the different proficiency designers. These behavior differences lead to significantly different performance levels, matching the human performance levels with just one exception. These validated heterogeneous agents are placed into teams and confirmed previous findings that the most proficient member of a configuration design team has the largest impact (positive or negative) on team performance. The PSADA model is introduced as a scalable platform to further explore configuration design proficiency's role in design team performance and organizational behavior.\",\"PeriodicalId\":50137,\"journal\":{\"name\":\"Journal of Mechanical Design\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062861\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062861","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A COMPUTATIONAL MODEL OF HUMAN PROFICIENCY IN ENGINEERING CONFIGURATION DESIGN
This work introduces the Proficient Simulated Annealing Design Agent Model (PSADA), a cognitively inspired, agent-based model of engineering configuration design. PSADA models different proficiency agents using move selection heuristics and problem space search strategies, both of which are identified and extracted from prior human subject studies. The model is validated with two design problems. Agents are compared to human designers and show the accurate simulation of the behaviors of the different proficiency designers. These behavior differences lead to significantly different performance levels, matching the human performance levels with just one exception. These validated heterogeneous agents are placed into teams and confirmed previous findings that the most proficient member of a configuration design team has the largest impact (positive or negative) on team performance. The PSADA model is introduced as a scalable platform to further explore configuration design proficiency's role in design team performance and organizational behavior.
期刊介绍:
The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.
Scope: The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.