B. Cole, R. Horning, B. Johnson, K. Nguyen, P. Kruse, M. Foote
{"title":"采用薄膜微结构的高性能红外探测器阵列","authors":"B. Cole, R. Horning, B. Johnson, K. Nguyen, P. Kruse, M. Foote","doi":"10.1109/ISAF.1994.522454","DOIUrl":null,"url":null,"abstract":"Honeywell has developed a unique uncooled thermal detector technology based on fabricating thin film structures with temperature sensitive detector materials. High TCR resistive materials such as VOx and YBaCuO, and pyroelectric PbTiO/sub 3/ have been used. Two dimensional imaging arrays of sizes up to 240/spl times/336 have been integrated with Si substrate electronics to achieve temperature sensitivities of less than .04 C operating at room temperature. The thin film detector materials are deposited on microstructure thin film pixels of 2 mil sizes which are subsequently thermally isolated from the substrate by etching away the underlying substrate. The thermal isolation of the microstructure pixel provides the temperature rise and the detector material provides the conversion to an electrical signal.","PeriodicalId":20488,"journal":{"name":"Proceedings of 1994 IEEE International Symposium on Applications of Ferroelectrics","volume":"15 1","pages":"653-656"},"PeriodicalIF":0.0000,"publicationDate":"1994-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"High performance infrared detector arrays using thin film microstructures\",\"authors\":\"B. Cole, R. Horning, B. Johnson, K. Nguyen, P. Kruse, M. Foote\",\"doi\":\"10.1109/ISAF.1994.522454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Honeywell has developed a unique uncooled thermal detector technology based on fabricating thin film structures with temperature sensitive detector materials. High TCR resistive materials such as VOx and YBaCuO, and pyroelectric PbTiO/sub 3/ have been used. Two dimensional imaging arrays of sizes up to 240/spl times/336 have been integrated with Si substrate electronics to achieve temperature sensitivities of less than .04 C operating at room temperature. The thin film detector materials are deposited on microstructure thin film pixels of 2 mil sizes which are subsequently thermally isolated from the substrate by etching away the underlying substrate. The thermal isolation of the microstructure pixel provides the temperature rise and the detector material provides the conversion to an electrical signal.\",\"PeriodicalId\":20488,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Symposium on Applications of Ferroelectrics\",\"volume\":\"15 1\",\"pages\":\"653-656\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Symposium on Applications of Ferroelectrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAF.1994.522454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Symposium on Applications of Ferroelectrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAF.1994.522454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High performance infrared detector arrays using thin film microstructures
Honeywell has developed a unique uncooled thermal detector technology based on fabricating thin film structures with temperature sensitive detector materials. High TCR resistive materials such as VOx and YBaCuO, and pyroelectric PbTiO/sub 3/ have been used. Two dimensional imaging arrays of sizes up to 240/spl times/336 have been integrated with Si substrate electronics to achieve temperature sensitivities of less than .04 C operating at room temperature. The thin film detector materials are deposited on microstructure thin film pixels of 2 mil sizes which are subsequently thermally isolated from the substrate by etching away the underlying substrate. The thermal isolation of the microstructure pixel provides the temperature rise and the detector material provides the conversion to an electrical signal.