{"title":"单晶圆单面制备高性能多级三维微结构P-in-G传感器","authors":"J. C. Wang, Xinxin Li","doi":"10.1109/TRANSDUCERS.2015.7180889","DOIUrl":null,"url":null,"abstract":"This paper reports, for the first time, a single-wafer micromachined P-in-G composite-sensor for automobile tire-pressure monitoring system (TPMS) application. Located inside the proof-mass of the accelerometer, the pressure sensor is freely suspended from the stress-free proof-mass-end, thereby eliminating the influence of acceleration to the pressure sensor. The designed P-in-G composite-sensor tested result is 36-fold better than that of the recently published work. Besides the compact P-in-G architecture, the 1.25mm×1.25mm×0.45mm tiny-sized composite-sensor benefits from the single-wafer front-side fabrication technique. With neither double-side alignment/exposure nor wafer-bonding, the IC-foundry compatible high-yield process has created a 6-level 3D micro-structure for the sensor. The sensors have been tested with satisfactory performance for TPMS application.","PeriodicalId":6465,"journal":{"name":"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A high-performance P-in-G sensor with multiple-level 3D micro-structure fabricated from one side of single wafer\",\"authors\":\"J. C. Wang, Xinxin Li\",\"doi\":\"10.1109/TRANSDUCERS.2015.7180889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports, for the first time, a single-wafer micromachined P-in-G composite-sensor for automobile tire-pressure monitoring system (TPMS) application. Located inside the proof-mass of the accelerometer, the pressure sensor is freely suspended from the stress-free proof-mass-end, thereby eliminating the influence of acceleration to the pressure sensor. The designed P-in-G composite-sensor tested result is 36-fold better than that of the recently published work. Besides the compact P-in-G architecture, the 1.25mm×1.25mm×0.45mm tiny-sized composite-sensor benefits from the single-wafer front-side fabrication technique. With neither double-side alignment/exposure nor wafer-bonding, the IC-foundry compatible high-yield process has created a 6-level 3D micro-structure for the sensor. The sensors have been tested with satisfactory performance for TPMS application.\",\"PeriodicalId\":6465,\"journal\":{\"name\":\"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRANSDUCERS.2015.7180889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2015.7180889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A high-performance P-in-G sensor with multiple-level 3D micro-structure fabricated from one side of single wafer
This paper reports, for the first time, a single-wafer micromachined P-in-G composite-sensor for automobile tire-pressure monitoring system (TPMS) application. Located inside the proof-mass of the accelerometer, the pressure sensor is freely suspended from the stress-free proof-mass-end, thereby eliminating the influence of acceleration to the pressure sensor. The designed P-in-G composite-sensor tested result is 36-fold better than that of the recently published work. Besides the compact P-in-G architecture, the 1.25mm×1.25mm×0.45mm tiny-sized composite-sensor benefits from the single-wafer front-side fabrication technique. With neither double-side alignment/exposure nor wafer-bonding, the IC-foundry compatible high-yield process has created a 6-level 3D micro-structure for the sensor. The sensors have been tested with satisfactory performance for TPMS application.