Rafael Dutra, Kevin Laeufer, J. Bachrach, Koushik Sen
{"title":"SAT测试解决方案的有效采样","authors":"Rafael Dutra, Kevin Laeufer, J. Bachrach, Koushik Sen","doi":"10.1145/3180155.3180248","DOIUrl":null,"url":null,"abstract":"In software and hardware testing, generating multiple inputs which satisfy a given set of constraints is an important problem with applications in fuzz testing and stimulus generation. However, it is a challenge to perform the sampling efficiently, while generating a diverse set of inputs which satisfy the constraints. We developed a new algorithm QuickSampler which requires a small number of solver calls to produce millions of samples which satisfy the constraints with high probability. We evaluate QuickSampler on large real-world benchmarks and show that it can produce unique valid solutions orders of magnitude faster than other state-of-the-art sampling tools, with a distribution which is reasonably close to uniform in practice.","PeriodicalId":6560,"journal":{"name":"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)","volume":"4 1","pages":"549-559"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"82","resultStr":"{\"title\":\"Efficient Sampling of SAT Solutions for Testing\",\"authors\":\"Rafael Dutra, Kevin Laeufer, J. Bachrach, Koushik Sen\",\"doi\":\"10.1145/3180155.3180248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In software and hardware testing, generating multiple inputs which satisfy a given set of constraints is an important problem with applications in fuzz testing and stimulus generation. However, it is a challenge to perform the sampling efficiently, while generating a diverse set of inputs which satisfy the constraints. We developed a new algorithm QuickSampler which requires a small number of solver calls to produce millions of samples which satisfy the constraints with high probability. We evaluate QuickSampler on large real-world benchmarks and show that it can produce unique valid solutions orders of magnitude faster than other state-of-the-art sampling tools, with a distribution which is reasonably close to uniform in practice.\",\"PeriodicalId\":6560,\"journal\":{\"name\":\"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)\",\"volume\":\"4 1\",\"pages\":\"549-559\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"82\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3180155.3180248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3180155.3180248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In software and hardware testing, generating multiple inputs which satisfy a given set of constraints is an important problem with applications in fuzz testing and stimulus generation. However, it is a challenge to perform the sampling efficiently, while generating a diverse set of inputs which satisfy the constraints. We developed a new algorithm QuickSampler which requires a small number of solver calls to produce millions of samples which satisfy the constraints with high probability. We evaluate QuickSampler on large real-world benchmarks and show that it can produce unique valid solutions orders of magnitude faster than other state-of-the-art sampling tools, with a distribution which is reasonably close to uniform in practice.