一种基于压缩感知的圆形卷积成像算法

Shujie Mu
{"title":"一种基于压缩感知的圆形卷积成像算法","authors":"Shujie Mu","doi":"10.1109/ICOCN53177.2021.9563900","DOIUrl":null,"url":null,"abstract":"To solve the problem of low efficiency in wavenumber domain imaging of circular synthetic aperture radar (CSAR), a novel circular convolution algorithm based on compressed sensing is proposed, which can avoid the complex calculation in by compressed sensing algorithm and the simulation results show that the algorithm can effectively improve the imaging quality.","PeriodicalId":6756,"journal":{"name":"2021 19th International Conference on Optical Communications and Networks (ICOCN)","volume":"42 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Circular Convolution Imaging Algorithm Based on Compressed Sensing for CSAR\",\"authors\":\"Shujie Mu\",\"doi\":\"10.1109/ICOCN53177.2021.9563900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the problem of low efficiency in wavenumber domain imaging of circular synthetic aperture radar (CSAR), a novel circular convolution algorithm based on compressed sensing is proposed, which can avoid the complex calculation in by compressed sensing algorithm and the simulation results show that the algorithm can effectively improve the imaging quality.\",\"PeriodicalId\":6756,\"journal\":{\"name\":\"2021 19th International Conference on Optical Communications and Networks (ICOCN)\",\"volume\":\"42 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 19th International Conference on Optical Communications and Networks (ICOCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOCN53177.2021.9563900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 19th International Conference on Optical Communications and Networks (ICOCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOCN53177.2021.9563900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对圆形合成孔径雷达(CSAR)波数域成像效率低的问题,提出了一种基于压缩感知的圆形卷积算法,避免了压缩感知算法的复杂计算,仿真结果表明该算法能有效提高成像质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Circular Convolution Imaging Algorithm Based on Compressed Sensing for CSAR
To solve the problem of low efficiency in wavenumber domain imaging of circular synthetic aperture radar (CSAR), a novel circular convolution algorithm based on compressed sensing is proposed, which can avoid the complex calculation in by compressed sensing algorithm and the simulation results show that the algorithm can effectively improve the imaging quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Four-channel high-speed strain measurement based on VT-DBR laser Deep Learning based Optical Network Layer Recovery Mechanism for Critical Services of Power Communication Network Study of CIGS Absorber Thickness and Gradient Bandgap effect on Device Performance Multi-wavelength thulium-doped fiber laser by using Sagnac loop mirror An InP-InGaAs-NiO p-i-n photodiode with partially depleted-absorber and depleted nonabsorbing region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1