Nan Wang, M. Tang, F. Hsiao, C. Ho, M. Palaniapan, D. Kwong, Chengkuo Lee
{"title":"基于声子晶体板的硅微谐振器的实验验证","authors":"Nan Wang, M. Tang, F. Hsiao, C. Ho, M. Palaniapan, D. Kwong, Chengkuo Lee","doi":"10.1109/OMN.2013.6659094","DOIUrl":null,"url":null,"abstract":"This paper reports experimentally measured data of two microfabricated resonators, namely a Fabry-Perot (FP) resonator and a reduced central-hole (RCH) resonator, formed by engineering different defects on an otherwise perfect phononic crystal (PnC) slab. Experimental results, which are well supported by the numerically simulated data, show that the RCH resonator has higher Q factor, higher resonant frequency and lower insertion loss than the FP resonator. Finite-element-modelling (FEM) analysed steady-state displacement profiles of the two resonators show that the higher Q factor obtained by the RCH resonator is caused by its superior ability of the energy confinement within the defected region.","PeriodicalId":6334,"journal":{"name":"2013 International Conference on Optical MEMS and Nanophotonics (OMN)","volume":"24 1","pages":"131-132"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental verification of phononic crystal slab based silicon microresonators\",\"authors\":\"Nan Wang, M. Tang, F. Hsiao, C. Ho, M. Palaniapan, D. Kwong, Chengkuo Lee\",\"doi\":\"10.1109/OMN.2013.6659094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports experimentally measured data of two microfabricated resonators, namely a Fabry-Perot (FP) resonator and a reduced central-hole (RCH) resonator, formed by engineering different defects on an otherwise perfect phononic crystal (PnC) slab. Experimental results, which are well supported by the numerically simulated data, show that the RCH resonator has higher Q factor, higher resonant frequency and lower insertion loss than the FP resonator. Finite-element-modelling (FEM) analysed steady-state displacement profiles of the two resonators show that the higher Q factor obtained by the RCH resonator is caused by its superior ability of the energy confinement within the defected region.\",\"PeriodicalId\":6334,\"journal\":{\"name\":\"2013 International Conference on Optical MEMS and Nanophotonics (OMN)\",\"volume\":\"24 1\",\"pages\":\"131-132\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Optical MEMS and Nanophotonics (OMN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OMN.2013.6659094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Optical MEMS and Nanophotonics (OMN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OMN.2013.6659094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental verification of phononic crystal slab based silicon microresonators
This paper reports experimentally measured data of two microfabricated resonators, namely a Fabry-Perot (FP) resonator and a reduced central-hole (RCH) resonator, formed by engineering different defects on an otherwise perfect phononic crystal (PnC) slab. Experimental results, which are well supported by the numerically simulated data, show that the RCH resonator has higher Q factor, higher resonant frequency and lower insertion loss than the FP resonator. Finite-element-modelling (FEM) analysed steady-state displacement profiles of the two resonators show that the higher Q factor obtained by the RCH resonator is caused by its superior ability of the energy confinement within the defected region.