基于改进YOLOv5s的车牌检测实现

Q3 Arts and Humanities Icon Pub Date : 2023-03-01 DOI:10.1109/ICNLP58431.2023.00026
Chen Yang, Guang-Yuan Zhao
{"title":"基于改进YOLOv5s的车牌检测实现","authors":"Chen Yang, Guang-Yuan Zhao","doi":"10.1109/ICNLP58431.2023.00026","DOIUrl":null,"url":null,"abstract":"In order to solve the problem of low accuracy of license plate detection, an improved license plate detection algorithm is proposed. The super-resolution reconstruction network SRGAN is used to enhance the image of the dataset and make the image of the license plate area clearer; The fourth C3 module of YOLOv5s backbone network is replaced with CBAM attention mechanism module to enhance the ability of backbone network to extract feature information, thus improving the detection accuracy. The experimental results show that YOLOv5s network using SRGAN for image enhancement and embedding CBAM attention mechanism improves the accuracy of license plate image.","PeriodicalId":53637,"journal":{"name":"Icon","volume":"39 1","pages":"108-112"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of License Plate Detection Based on Improved YOLOv5s\",\"authors\":\"Chen Yang, Guang-Yuan Zhao\",\"doi\":\"10.1109/ICNLP58431.2023.00026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to solve the problem of low accuracy of license plate detection, an improved license plate detection algorithm is proposed. The super-resolution reconstruction network SRGAN is used to enhance the image of the dataset and make the image of the license plate area clearer; The fourth C3 module of YOLOv5s backbone network is replaced with CBAM attention mechanism module to enhance the ability of backbone network to extract feature information, thus improving the detection accuracy. The experimental results show that YOLOv5s network using SRGAN for image enhancement and embedding CBAM attention mechanism improves the accuracy of license plate image.\",\"PeriodicalId\":53637,\"journal\":{\"name\":\"Icon\",\"volume\":\"39 1\",\"pages\":\"108-112\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Icon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNLP58431.2023.00026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNLP58431.2023.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

为了解决车牌检测精度低的问题,提出了一种改进的车牌检测算法。采用超分辨率重构网络SRGAN对数据集进行图像增强,使车牌区域图像更加清晰;将YOLOv5s骨干网的第四个C3模块替换为CBAM注意机制模块,增强骨干网提取特征信息的能力,从而提高检测精度。实验结果表明,YOLOv5s网络采用SRGAN进行图像增强,并嵌入CBAM注意机制,提高了车牌图像的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementation of License Plate Detection Based on Improved YOLOv5s
In order to solve the problem of low accuracy of license plate detection, an improved license plate detection algorithm is proposed. The super-resolution reconstruction network SRGAN is used to enhance the image of the dataset and make the image of the license plate area clearer; The fourth C3 module of YOLOv5s backbone network is replaced with CBAM attention mechanism module to enhance the ability of backbone network to extract feature information, thus improving the detection accuracy. The experimental results show that YOLOv5s network using SRGAN for image enhancement and embedding CBAM attention mechanism improves the accuracy of license plate image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Icon
Icon Arts and Humanities-History and Philosophy of Science
CiteScore
0.30
自引率
0.00%
发文量
0
期刊最新文献
Long-term Coherent Accumulation Algorithm Based on Radar Altimeter Deep Composite Kernels ELM Based on Spatial Feature Extraction for Hyperspectral Vegetation Image Classification Research based on improved SSD target detection algorithm CON-GAN-BERT: combining Contrastive Learning with Generative Adversarial Nets for Few-Shot Sentiment Classification A Two Stage Learning Algorithm for Hyperspectral Image Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1