{"title":"·诊断:大规模微服务平台中小窗口长尾延迟的无监督实时诊断","authors":"Huasong Shan, Yuan Chen, Haifeng Liu, Yunpeng Zhang, Xiao Xiao, Xiaofeng He, Min Li, Wei Ding","doi":"10.1145/3308558.3313653","DOIUrl":null,"url":null,"abstract":"Microservice architectures and container technologies are broadly adopted by giant internet companies to support their web services, which typically have a strict service-level objective (SLO), tail latency, rather than average latency. However, diagnosing SLO violations, e.g., long tail latency problem, is non-trivial for large-scale web applications in shared microservice platforms due to million-level operational data and complex operational environments. We identify a new type of tail latency problem for web services, small-window long-tail latency (SWLT), which is typically aggregated during a small statistical window (e.g., 1-minute or 1-second). We observe SWLT usually occurs in a small number of containers in microservice clusters and sharply shifts among different containers at different time points. To diagnose root-causes of SWLT, we propose an unsupervised and low-cost diagnosis algorithm-?-Diagnosis, using two-sample test algorithm and ?-statistics for measuring similarity of time series to identify root-cause metrics from millions of metrics. We implement and deploy a real-time diagnosis system in our real-production microservice platforms. The evaluation using real web application datasets demonstrates that ?-Diagnosis can identify all the actual root-causes at runtime and significantly reduce the candidate problem space, outperforming other time-series distance based root-cause analysis algorithms.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"?-Diagnosis: Unsupervised and Real-time Diagnosis of Small- window Long-tail Latency in Large-scale Microservice Platforms\",\"authors\":\"Huasong Shan, Yuan Chen, Haifeng Liu, Yunpeng Zhang, Xiao Xiao, Xiaofeng He, Min Li, Wei Ding\",\"doi\":\"10.1145/3308558.3313653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microservice architectures and container technologies are broadly adopted by giant internet companies to support their web services, which typically have a strict service-level objective (SLO), tail latency, rather than average latency. However, diagnosing SLO violations, e.g., long tail latency problem, is non-trivial for large-scale web applications in shared microservice platforms due to million-level operational data and complex operational environments. We identify a new type of tail latency problem for web services, small-window long-tail latency (SWLT), which is typically aggregated during a small statistical window (e.g., 1-minute or 1-second). We observe SWLT usually occurs in a small number of containers in microservice clusters and sharply shifts among different containers at different time points. To diagnose root-causes of SWLT, we propose an unsupervised and low-cost diagnosis algorithm-?-Diagnosis, using two-sample test algorithm and ?-statistics for measuring similarity of time series to identify root-cause metrics from millions of metrics. We implement and deploy a real-time diagnosis system in our real-production microservice platforms. The evaluation using real web application datasets demonstrates that ?-Diagnosis can identify all the actual root-causes at runtime and significantly reduce the candidate problem space, outperforming other time-series distance based root-cause analysis algorithms.\",\"PeriodicalId\":23013,\"journal\":{\"name\":\"The World Wide Web Conference\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The World Wide Web Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3308558.3313653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3313653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
?-Diagnosis: Unsupervised and Real-time Diagnosis of Small- window Long-tail Latency in Large-scale Microservice Platforms
Microservice architectures and container technologies are broadly adopted by giant internet companies to support their web services, which typically have a strict service-level objective (SLO), tail latency, rather than average latency. However, diagnosing SLO violations, e.g., long tail latency problem, is non-trivial for large-scale web applications in shared microservice platforms due to million-level operational data and complex operational environments. We identify a new type of tail latency problem for web services, small-window long-tail latency (SWLT), which is typically aggregated during a small statistical window (e.g., 1-minute or 1-second). We observe SWLT usually occurs in a small number of containers in microservice clusters and sharply shifts among different containers at different time points. To diagnose root-causes of SWLT, we propose an unsupervised and low-cost diagnosis algorithm-?-Diagnosis, using two-sample test algorithm and ?-statistics for measuring similarity of time series to identify root-cause metrics from millions of metrics. We implement and deploy a real-time diagnosis system in our real-production microservice platforms. The evaluation using real web application datasets demonstrates that ?-Diagnosis can identify all the actual root-causes at runtime and significantly reduce the candidate problem space, outperforming other time-series distance based root-cause analysis algorithms.