一类基于贪心算法的闭环系统迭代辨识

Junyao You, Huan Xu, Yanjun Liu, J. Chen
{"title":"一类基于贪心算法的闭环系统迭代辨识","authors":"Junyao You, Huan Xu, Yanjun Liu, J. Chen","doi":"10.1109/DDCLS.2018.8516028","DOIUrl":null,"url":null,"abstract":"A compressive sampling matching pursuit (CoSaMP) iterative algorithm is proposed in this paper to identify parameters and time-delays of a class of closed-loop systems where the forward channel is a CARMA model. Due to the unknown time-delays of both the feedback controller and the controlled plant, a high dimensional identification model with a sparse parameter vector is derived by using an overparameterized method. Then combining the CoSaMP algorithm with the iterative idea, the parameter vector is estimated and the unmeasurable noise items are updated in each iteration. Finally, the parameters of the feedback controller are extracted based on the model equivalence principle and time-delays are estimated according to the sparse characteristic of the parameter vector. The proposed method can simultaneously estimate the parameters and time-delays from a small number of sampled data. The simulation results illustrate that the proposed algorithm is effective.","PeriodicalId":6565,"journal":{"name":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"2 1","pages":"934-938"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iterative Identification for A Class of Closed-loop Systems Based on A Greedy Algorithm\",\"authors\":\"Junyao You, Huan Xu, Yanjun Liu, J. Chen\",\"doi\":\"10.1109/DDCLS.2018.8516028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A compressive sampling matching pursuit (CoSaMP) iterative algorithm is proposed in this paper to identify parameters and time-delays of a class of closed-loop systems where the forward channel is a CARMA model. Due to the unknown time-delays of both the feedback controller and the controlled plant, a high dimensional identification model with a sparse parameter vector is derived by using an overparameterized method. Then combining the CoSaMP algorithm with the iterative idea, the parameter vector is estimated and the unmeasurable noise items are updated in each iteration. Finally, the parameters of the feedback controller are extracted based on the model equivalence principle and time-delays are estimated according to the sparse characteristic of the parameter vector. The proposed method can simultaneously estimate the parameters and time-delays from a small number of sampled data. The simulation results illustrate that the proposed algorithm is effective.\",\"PeriodicalId\":6565,\"journal\":{\"name\":\"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)\",\"volume\":\"2 1\",\"pages\":\"934-938\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS.2018.8516028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2018.8516028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对一类前向信道为CARMA模型的闭环系统,提出了一种压缩采样匹配追踪(CoSaMP)迭代算法。由于反馈控制器和被控对象均存在未知的时滞,采用过参数化方法建立了具有稀疏参数向量的高维辨识模型。然后将CoSaMP算法与迭代思想相结合,对参数向量进行估计,并在每次迭代中更新不可测噪声项。最后,基于模型等价原理提取反馈控制器的参数,并根据参数向量的稀疏特性估计时滞。该方法可以从少量采样数据中同时估计出参数和时延。仿真结果表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Iterative Identification for A Class of Closed-loop Systems Based on A Greedy Algorithm
A compressive sampling matching pursuit (CoSaMP) iterative algorithm is proposed in this paper to identify parameters and time-delays of a class of closed-loop systems where the forward channel is a CARMA model. Due to the unknown time-delays of both the feedback controller and the controlled plant, a high dimensional identification model with a sparse parameter vector is derived by using an overparameterized method. Then combining the CoSaMP algorithm with the iterative idea, the parameter vector is estimated and the unmeasurable noise items are updated in each iteration. Finally, the parameters of the feedback controller are extracted based on the model equivalence principle and time-delays are estimated according to the sparse characteristic of the parameter vector. The proposed method can simultaneously estimate the parameters and time-delays from a small number of sampled data. The simulation results illustrate that the proposed algorithm is effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fault Diagnosis of High-speed Train Bogie Based on Spectrogram and Multi-channel Voting Yarn-dyed Fabric Defect Detection with YOLOV2 Based on Deep Convolution Neural Networks On the Design and Analysis of a Learning Control Algorithm for Point-to-point Tracking Tasks Iterative Learning Control for Singular System with An Arbitrary Initial State A Comparative Study of Adaptive Soft Sensors for Quality Prediction in an Industrial Refining Hydrocracking Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1