M. Syed, C. Hynes, Brittany Anderson, T. S. Ahmadi, B. Goh, Nur Fatin Farhanah binti Nazarudin, M. Syed, A. Ali
{"title":"利用辉光放电分解技术制备新一代太阳能电池的SiO2基氢化纳米晶硅薄膜","authors":"M. Syed, C. Hynes, Brittany Anderson, T. S. Ahmadi, B. Goh, Nur Fatin Farhanah binti Nazarudin, M. Syed, A. Ali","doi":"10.5539/JMSR.V8N1P25","DOIUrl":null,"url":null,"abstract":"Hydrogenated Nanocrystalline Silicon (nc-Si:H) thin films using SiH4/H2 mixture by glow discharged decomposition were investigated on c-Si and glass substrates. The effects of substrate temperature on the Structural, Optical and Electrical properties of the films were investigated by X-ray diffraction, Raman scattering, FT/IR, Optical transmission and Atomic Force Microscopy (AFM). Substrate temperatures ([TSB]) of the films were changed from 100oC to 250oC. It has been revealed the strong dependence on the film’s properties with the substrate temperatures. XRD and Raman measurements were shown that the higher substrate temperature (250oC) exhibits the highest crystalline volume fraction ([ρ] = 95%) and the lowest crystalline size ([Ω] = 3.5 nm) as well, having the highest H-content and the lowest O-content. At 250oC, the lowest mobility and the highest resistivity were also found to be ~37.5 cm2/v.s and 7.35 Ω-cm. Refractive index and the optical energy gap (Eg) were estimated by 3.8 and 1.9 eV having the growth rate of 4.2 nm/min. At 250oC, it was resulted in a blue shift of the absorption edge having uniform grain distributions. Results indicate that in situ hydrogen cleaning effects is prominent and localized orderly high density Si-Si bonds are exhibiting quantum size effects at highest substrate temperature.","PeriodicalId":16111,"journal":{"name":"Journal of Materials Science Research","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogenated Nano-Crystalline Silicon Thin Films in SiO2 Matrix for Next Generation Solar Cells Using Glow Discharged Decomposition\",\"authors\":\"M. Syed, C. Hynes, Brittany Anderson, T. S. Ahmadi, B. Goh, Nur Fatin Farhanah binti Nazarudin, M. Syed, A. Ali\",\"doi\":\"10.5539/JMSR.V8N1P25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrogenated Nanocrystalline Silicon (nc-Si:H) thin films using SiH4/H2 mixture by glow discharged decomposition were investigated on c-Si and glass substrates. The effects of substrate temperature on the Structural, Optical and Electrical properties of the films were investigated by X-ray diffraction, Raman scattering, FT/IR, Optical transmission and Atomic Force Microscopy (AFM). Substrate temperatures ([TSB]) of the films were changed from 100oC to 250oC. It has been revealed the strong dependence on the film’s properties with the substrate temperatures. XRD and Raman measurements were shown that the higher substrate temperature (250oC) exhibits the highest crystalline volume fraction ([ρ] = 95%) and the lowest crystalline size ([Ω] = 3.5 nm) as well, having the highest H-content and the lowest O-content. At 250oC, the lowest mobility and the highest resistivity were also found to be ~37.5 cm2/v.s and 7.35 Ω-cm. Refractive index and the optical energy gap (Eg) were estimated by 3.8 and 1.9 eV having the growth rate of 4.2 nm/min. At 250oC, it was resulted in a blue shift of the absorption edge having uniform grain distributions. Results indicate that in situ hydrogen cleaning effects is prominent and localized orderly high density Si-Si bonds are exhibiting quantum size effects at highest substrate temperature.\",\"PeriodicalId\":16111,\"journal\":{\"name\":\"Journal of Materials Science Research\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/JMSR.V8N1P25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/JMSR.V8N1P25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hydrogenated Nano-Crystalline Silicon Thin Films in SiO2 Matrix for Next Generation Solar Cells Using Glow Discharged Decomposition
Hydrogenated Nanocrystalline Silicon (nc-Si:H) thin films using SiH4/H2 mixture by glow discharged decomposition were investigated on c-Si and glass substrates. The effects of substrate temperature on the Structural, Optical and Electrical properties of the films were investigated by X-ray diffraction, Raman scattering, FT/IR, Optical transmission and Atomic Force Microscopy (AFM). Substrate temperatures ([TSB]) of the films were changed from 100oC to 250oC. It has been revealed the strong dependence on the film’s properties with the substrate temperatures. XRD and Raman measurements were shown that the higher substrate temperature (250oC) exhibits the highest crystalline volume fraction ([ρ] = 95%) and the lowest crystalline size ([Ω] = 3.5 nm) as well, having the highest H-content and the lowest O-content. At 250oC, the lowest mobility and the highest resistivity were also found to be ~37.5 cm2/v.s and 7.35 Ω-cm. Refractive index and the optical energy gap (Eg) were estimated by 3.8 and 1.9 eV having the growth rate of 4.2 nm/min. At 250oC, it was resulted in a blue shift of the absorption edge having uniform grain distributions. Results indicate that in situ hydrogen cleaning effects is prominent and localized orderly high density Si-Si bonds are exhibiting quantum size effects at highest substrate temperature.