沙鱼β-角蛋白的比较研究(爬行纲:沙鱼科:沙鱼科)。第1部分:表面和分子检查

Konrad Staudt, F. Saxe, H. Schmied, Raphael Soeur, W. Böhme, W. Baumgartner
{"title":"沙鱼β-角蛋白的比较研究(爬行纲:沙鱼科:沙鱼科)。第1部分:表面和分子检查","authors":"Konrad Staudt, F. Saxe, H. Schmied, Raphael Soeur, W. Böhme, W. Baumgartner","doi":"10.4028/www.scientific.net/JBBTE.15.1","DOIUrl":null,"url":null,"abstract":"The Sandfish (Scincidae: Scincus Scincus) Is a Lizard Capable of Moving through Desert Sand in a Swimming-Like Fashion. the Epidermis of this Lizard Shows a High Resistance against Abrasion Together with a Low Friction to Sand as an Adaption to a Subterranean Life below the Desert’s Surface, Outperforming even Steel. the Low Friction Is Mainly Caused by Chemical Composition of the Scales, which Consist of Glycosylated β-Keratins. in this Study, the Friction, the Micro-Structure, the Glycosylation of the β-Keratin Proteins and β-Keratin Coding DNA of the Sandfish in Comparison to other Reptilian Species Was Investigated, Mainly with the Closely Related Berber Skink (Scincidae: Eumeces Schneideri) and another Sand Swimming Species, the Not Closer Related Shovel-Snouted Lizard (Lacertidae: Meroles Anchietae). Glycosylated β-Keratins of the Sandfish, Visualized with Different Lectins Resulted in O-Linked Glycans through PNA Employed as Carbohydrate Marker. Furthermore, the Glycosylation of β-Keratins in Various Squamatean Species Was Investigated and All Species Tested Were Found Positive; however, it Seems Like both Sand Swimming Species Examined Have a much Stronger Glycosylation of their β-Keratins. in Order to Prove this Finding through a Genetic Foundation, DNA of a β-Keratin Coding Gene of the Sandfish Was Sequenced and Compared with a Homologue Gene of Eumeces Schneideri. by Comparison of the Protein Sequence, a Higher Abundance of O-Glycosylation Sites Was Found in the Sandfish (enabled through the Amino Acids Serine and Threonine), Giving Molecular Support for a Higher Glycosylation of the β-Keratins in this Species.","PeriodicalId":15198,"journal":{"name":"Journal of Biomimetics, Biomaterials and Tissue Engineering","volume":"34 1","pages":"1 - 16"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Comparative Investigations of the Sandfish’s β-Keratin (Reptilia: Scincidae: Scincus scincus). Part 1: Surface and Molecular Examinations\",\"authors\":\"Konrad Staudt, F. Saxe, H. Schmied, Raphael Soeur, W. Böhme, W. Baumgartner\",\"doi\":\"10.4028/www.scientific.net/JBBTE.15.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Sandfish (Scincidae: Scincus Scincus) Is a Lizard Capable of Moving through Desert Sand in a Swimming-Like Fashion. the Epidermis of this Lizard Shows a High Resistance against Abrasion Together with a Low Friction to Sand as an Adaption to a Subterranean Life below the Desert’s Surface, Outperforming even Steel. the Low Friction Is Mainly Caused by Chemical Composition of the Scales, which Consist of Glycosylated β-Keratins. in this Study, the Friction, the Micro-Structure, the Glycosylation of the β-Keratin Proteins and β-Keratin Coding DNA of the Sandfish in Comparison to other Reptilian Species Was Investigated, Mainly with the Closely Related Berber Skink (Scincidae: Eumeces Schneideri) and another Sand Swimming Species, the Not Closer Related Shovel-Snouted Lizard (Lacertidae: Meroles Anchietae). Glycosylated β-Keratins of the Sandfish, Visualized with Different Lectins Resulted in O-Linked Glycans through PNA Employed as Carbohydrate Marker. Furthermore, the Glycosylation of β-Keratins in Various Squamatean Species Was Investigated and All Species Tested Were Found Positive; however, it Seems Like both Sand Swimming Species Examined Have a much Stronger Glycosylation of their β-Keratins. in Order to Prove this Finding through a Genetic Foundation, DNA of a β-Keratin Coding Gene of the Sandfish Was Sequenced and Compared with a Homologue Gene of Eumeces Schneideri. by Comparison of the Protein Sequence, a Higher Abundance of O-Glycosylation Sites Was Found in the Sandfish (enabled through the Amino Acids Serine and Threonine), Giving Molecular Support for a Higher Glycosylation of the β-Keratins in this Species.\",\"PeriodicalId\":15198,\"journal\":{\"name\":\"Journal of Biomimetics, Biomaterials and Tissue Engineering\",\"volume\":\"34 1\",\"pages\":\"1 - 16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomimetics, Biomaterials and Tissue Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/www.scientific.net/JBBTE.15.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Tissue Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/JBBTE.15.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

沙鱼是一种能够像游泳一样在沙漠中移动的蜥蜴。这种蜥蜴的表皮具有很高的抗磨损性,同时对沙子的摩擦也很低,适应了沙漠表面下的地下生活,甚至比钢铁还好。低摩擦主要是由于鳞片的化学成分,由糖基化的β-角蛋白组成。本研究主要研究了沙鱼与其他爬行动物的摩擦、微观结构、β-角蛋白的糖基化和β-角蛋白编码DNA的比较,主要研究了与其他爬行动物密切相关的小檗皮蜥(Scincidae: Eumeces Schneideri)和另一种沙游物种——不密切相关的铲嘴蜥(Lacertidae: Meroles Anchietae)。用不同凝集素对沙鱼β-角蛋白进行糖基化,通过PNA作为碳水化合物标记生成o -链聚糖。此外,我们还对不同种类的Squamatean进行了β-角蛋白糖基化检测,结果显示所有种类的Squamatean均呈阳性;然而,似乎两种沙泳物种的β-角蛋白糖基化程度都要高得多。为了从遗传学基础上证明这一发现,我们对沙鱼β-角蛋白编码基因的DNA进行了测序,并与沙鱼的同源基因进行了比较。通过蛋白质序列的比较,在沙鱼中发现了更高丰度的o糖基化位点(通过氨基酸丝氨酸和苏氨酸实现),为该物种β-角蛋白的高糖基化提供了分子支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative Investigations of the Sandfish’s β-Keratin (Reptilia: Scincidae: Scincus scincus). Part 1: Surface and Molecular Examinations
The Sandfish (Scincidae: Scincus Scincus) Is a Lizard Capable of Moving through Desert Sand in a Swimming-Like Fashion. the Epidermis of this Lizard Shows a High Resistance against Abrasion Together with a Low Friction to Sand as an Adaption to a Subterranean Life below the Desert’s Surface, Outperforming even Steel. the Low Friction Is Mainly Caused by Chemical Composition of the Scales, which Consist of Glycosylated β-Keratins. in this Study, the Friction, the Micro-Structure, the Glycosylation of the β-Keratin Proteins and β-Keratin Coding DNA of the Sandfish in Comparison to other Reptilian Species Was Investigated, Mainly with the Closely Related Berber Skink (Scincidae: Eumeces Schneideri) and another Sand Swimming Species, the Not Closer Related Shovel-Snouted Lizard (Lacertidae: Meroles Anchietae). Glycosylated β-Keratins of the Sandfish, Visualized with Different Lectins Resulted in O-Linked Glycans through PNA Employed as Carbohydrate Marker. Furthermore, the Glycosylation of β-Keratins in Various Squamatean Species Was Investigated and All Species Tested Were Found Positive; however, it Seems Like both Sand Swimming Species Examined Have a much Stronger Glycosylation of their β-Keratins. in Order to Prove this Finding through a Genetic Foundation, DNA of a β-Keratin Coding Gene of the Sandfish Was Sequenced and Compared with a Homologue Gene of Eumeces Schneideri. by Comparison of the Protein Sequence, a Higher Abundance of O-Glycosylation Sites Was Found in the Sandfish (enabled through the Amino Acids Serine and Threonine), Giving Molecular Support for a Higher Glycosylation of the β-Keratins in this Species.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A biomechanical device for human sensorimotor function Programmable materials for mechanobiology Grasshopper Knee Joint - Torque Analysis of Actuators Using Ionic Polymer Metal Composites (IPMC) Effect of Unilateral Non-Rhythmical Stimulation on Bilateral Cerebral Cortex and Muscle Activation in People Strong and Bioactive Tri-Calcium Phosphate Scaffolds with Tube-Like Macropores
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1