Konrad Staudt, F. Saxe, H. Schmied, Raphael Soeur, W. Böhme, W. Baumgartner
{"title":"沙鱼β-角蛋白的比较研究(爬行纲:沙鱼科:沙鱼科)。第1部分:表面和分子检查","authors":"Konrad Staudt, F. Saxe, H. Schmied, Raphael Soeur, W. Böhme, W. Baumgartner","doi":"10.4028/www.scientific.net/JBBTE.15.1","DOIUrl":null,"url":null,"abstract":"The Sandfish (Scincidae: Scincus Scincus) Is a Lizard Capable of Moving through Desert Sand in a Swimming-Like Fashion. the Epidermis of this Lizard Shows a High Resistance against Abrasion Together with a Low Friction to Sand as an Adaption to a Subterranean Life below the Desert’s Surface, Outperforming even Steel. the Low Friction Is Mainly Caused by Chemical Composition of the Scales, which Consist of Glycosylated β-Keratins. in this Study, the Friction, the Micro-Structure, the Glycosylation of the β-Keratin Proteins and β-Keratin Coding DNA of the Sandfish in Comparison to other Reptilian Species Was Investigated, Mainly with the Closely Related Berber Skink (Scincidae: Eumeces Schneideri) and another Sand Swimming Species, the Not Closer Related Shovel-Snouted Lizard (Lacertidae: Meroles Anchietae). Glycosylated β-Keratins of the Sandfish, Visualized with Different Lectins Resulted in O-Linked Glycans through PNA Employed as Carbohydrate Marker. Furthermore, the Glycosylation of β-Keratins in Various Squamatean Species Was Investigated and All Species Tested Were Found Positive; however, it Seems Like both Sand Swimming Species Examined Have a much Stronger Glycosylation of their β-Keratins. in Order to Prove this Finding through a Genetic Foundation, DNA of a β-Keratin Coding Gene of the Sandfish Was Sequenced and Compared with a Homologue Gene of Eumeces Schneideri. by Comparison of the Protein Sequence, a Higher Abundance of O-Glycosylation Sites Was Found in the Sandfish (enabled through the Amino Acids Serine and Threonine), Giving Molecular Support for a Higher Glycosylation of the β-Keratins in this Species.","PeriodicalId":15198,"journal":{"name":"Journal of Biomimetics, Biomaterials and Tissue Engineering","volume":"34 1","pages":"1 - 16"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Comparative Investigations of the Sandfish’s β-Keratin (Reptilia: Scincidae: Scincus scincus). Part 1: Surface and Molecular Examinations\",\"authors\":\"Konrad Staudt, F. Saxe, H. Schmied, Raphael Soeur, W. Böhme, W. Baumgartner\",\"doi\":\"10.4028/www.scientific.net/JBBTE.15.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Sandfish (Scincidae: Scincus Scincus) Is a Lizard Capable of Moving through Desert Sand in a Swimming-Like Fashion. the Epidermis of this Lizard Shows a High Resistance against Abrasion Together with a Low Friction to Sand as an Adaption to a Subterranean Life below the Desert’s Surface, Outperforming even Steel. the Low Friction Is Mainly Caused by Chemical Composition of the Scales, which Consist of Glycosylated β-Keratins. in this Study, the Friction, the Micro-Structure, the Glycosylation of the β-Keratin Proteins and β-Keratin Coding DNA of the Sandfish in Comparison to other Reptilian Species Was Investigated, Mainly with the Closely Related Berber Skink (Scincidae: Eumeces Schneideri) and another Sand Swimming Species, the Not Closer Related Shovel-Snouted Lizard (Lacertidae: Meroles Anchietae). Glycosylated β-Keratins of the Sandfish, Visualized with Different Lectins Resulted in O-Linked Glycans through PNA Employed as Carbohydrate Marker. Furthermore, the Glycosylation of β-Keratins in Various Squamatean Species Was Investigated and All Species Tested Were Found Positive; however, it Seems Like both Sand Swimming Species Examined Have a much Stronger Glycosylation of their β-Keratins. in Order to Prove this Finding through a Genetic Foundation, DNA of a β-Keratin Coding Gene of the Sandfish Was Sequenced and Compared with a Homologue Gene of Eumeces Schneideri. by Comparison of the Protein Sequence, a Higher Abundance of O-Glycosylation Sites Was Found in the Sandfish (enabled through the Amino Acids Serine and Threonine), Giving Molecular Support for a Higher Glycosylation of the β-Keratins in this Species.\",\"PeriodicalId\":15198,\"journal\":{\"name\":\"Journal of Biomimetics, Biomaterials and Tissue Engineering\",\"volume\":\"34 1\",\"pages\":\"1 - 16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomimetics, Biomaterials and Tissue Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/www.scientific.net/JBBTE.15.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Tissue Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/JBBTE.15.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative Investigations of the Sandfish’s β-Keratin (Reptilia: Scincidae: Scincus scincus). Part 1: Surface and Molecular Examinations
The Sandfish (Scincidae: Scincus Scincus) Is a Lizard Capable of Moving through Desert Sand in a Swimming-Like Fashion. the Epidermis of this Lizard Shows a High Resistance against Abrasion Together with a Low Friction to Sand as an Adaption to a Subterranean Life below the Desert’s Surface, Outperforming even Steel. the Low Friction Is Mainly Caused by Chemical Composition of the Scales, which Consist of Glycosylated β-Keratins. in this Study, the Friction, the Micro-Structure, the Glycosylation of the β-Keratin Proteins and β-Keratin Coding DNA of the Sandfish in Comparison to other Reptilian Species Was Investigated, Mainly with the Closely Related Berber Skink (Scincidae: Eumeces Schneideri) and another Sand Swimming Species, the Not Closer Related Shovel-Snouted Lizard (Lacertidae: Meroles Anchietae). Glycosylated β-Keratins of the Sandfish, Visualized with Different Lectins Resulted in O-Linked Glycans through PNA Employed as Carbohydrate Marker. Furthermore, the Glycosylation of β-Keratins in Various Squamatean Species Was Investigated and All Species Tested Were Found Positive; however, it Seems Like both Sand Swimming Species Examined Have a much Stronger Glycosylation of their β-Keratins. in Order to Prove this Finding through a Genetic Foundation, DNA of a β-Keratin Coding Gene of the Sandfish Was Sequenced and Compared with a Homologue Gene of Eumeces Schneideri. by Comparison of the Protein Sequence, a Higher Abundance of O-Glycosylation Sites Was Found in the Sandfish (enabled through the Amino Acids Serine and Threonine), Giving Molecular Support for a Higher Glycosylation of the β-Keratins in this Species.