J. Stegner, U. Stehr, Cheng Tu, Joshua E-Y Lee, M. Hein
{"title":"采用AlN-on-Si谐振器的极低相位噪声RF-MEMS参考振荡器通过精确的联合仿真实现","authors":"J. Stegner, U. Stehr, Cheng Tu, Joshua E-Y Lee, M. Hein","doi":"10.1109/MWSYM.2017.8058850","DOIUrl":null,"url":null,"abstract":"Reference oscillators are crucial hardware components of radio-frequency receiver circuits, as their performance directly affects the system performance. Especially in GHz applications, such as 4G/5G mobile communications, a low error-vector magnitude is required, which is strongly influenced by the phase noise of the reference oscillator. This paper reports the results of the design, simulation, and measurement of a MEMS oscillator with very low phase noise. Therefore, it is suitable for use as reference oscillator operating at high frequencies in RF receiver systems. While the MEMS device is a plate-shaped contour-mode resonator in an aluminium-nitride-on-silicon technology, the active part of the oscillator is designed and fabricated in a 180 nm CMOS technology. By adding the parasitic effects of the assembly, taken from measurements of the submodules, the results from system simulation and measurement show good agreement, i.e. only 3 dB deviation in the noise floor of −142 dBc/Hz. The phase-noise level of the oscillator at an offset of 1kHz from the operating frequency of 256 MHz is −112 dBc/Hz, among the lowest values reported for MEMS-based oscillators at this high frequency.","PeriodicalId":6481,"journal":{"name":"2017 IEEE MTT-S International Microwave Symposium (IMS)","volume":"13 1","pages":"1303-1306"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Very-low phase noise RF-MEMS reference oscillator using AlN-on-Si resonators achieved by accurate co-simulation\",\"authors\":\"J. Stegner, U. Stehr, Cheng Tu, Joshua E-Y Lee, M. Hein\",\"doi\":\"10.1109/MWSYM.2017.8058850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reference oscillators are crucial hardware components of radio-frequency receiver circuits, as their performance directly affects the system performance. Especially in GHz applications, such as 4G/5G mobile communications, a low error-vector magnitude is required, which is strongly influenced by the phase noise of the reference oscillator. This paper reports the results of the design, simulation, and measurement of a MEMS oscillator with very low phase noise. Therefore, it is suitable for use as reference oscillator operating at high frequencies in RF receiver systems. While the MEMS device is a plate-shaped contour-mode resonator in an aluminium-nitride-on-silicon technology, the active part of the oscillator is designed and fabricated in a 180 nm CMOS technology. By adding the parasitic effects of the assembly, taken from measurements of the submodules, the results from system simulation and measurement show good agreement, i.e. only 3 dB deviation in the noise floor of −142 dBc/Hz. The phase-noise level of the oscillator at an offset of 1kHz from the operating frequency of 256 MHz is −112 dBc/Hz, among the lowest values reported for MEMS-based oscillators at this high frequency.\",\"PeriodicalId\":6481,\"journal\":{\"name\":\"2017 IEEE MTT-S International Microwave Symposium (IMS)\",\"volume\":\"13 1\",\"pages\":\"1303-1306\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE MTT-S International Microwave Symposium (IMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSYM.2017.8058850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2017.8058850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Very-low phase noise RF-MEMS reference oscillator using AlN-on-Si resonators achieved by accurate co-simulation
Reference oscillators are crucial hardware components of radio-frequency receiver circuits, as their performance directly affects the system performance. Especially in GHz applications, such as 4G/5G mobile communications, a low error-vector magnitude is required, which is strongly influenced by the phase noise of the reference oscillator. This paper reports the results of the design, simulation, and measurement of a MEMS oscillator with very low phase noise. Therefore, it is suitable for use as reference oscillator operating at high frequencies in RF receiver systems. While the MEMS device is a plate-shaped contour-mode resonator in an aluminium-nitride-on-silicon technology, the active part of the oscillator is designed and fabricated in a 180 nm CMOS technology. By adding the parasitic effects of the assembly, taken from measurements of the submodules, the results from system simulation and measurement show good agreement, i.e. only 3 dB deviation in the noise floor of −142 dBc/Hz. The phase-noise level of the oscillator at an offset of 1kHz from the operating frequency of 256 MHz is −112 dBc/Hz, among the lowest values reported for MEMS-based oscillators at this high frequency.