基于新型BERT预训练的中文文本分类研究

Q3 Arts and Humanities Icon Pub Date : 2023-03-01 DOI:10.1109/ICNLP58431.2023.00062
Youyao Liu, Haimei Huang, Jialei Gao, Shihao Gai
{"title":"基于新型BERT预训练的中文文本分类研究","authors":"Youyao Liu, Haimei Huang, Jialei Gao, Shihao Gai","doi":"10.1109/ICNLP58431.2023.00062","DOIUrl":null,"url":null,"abstract":"Chinese Text Classification (TC) is the process of mapping text to a pre-given topics category. In recent years, it has been found that TC is mainly based on RNN and BERT, so the development of different novel pre-training applied to Chinese TC is described as based on BERT pre-training. BERT combined with convolutional neural network is proposed to extend the BERT-CNN model for the problem of lack of semantic knowledge of BERT to derive a good classification effect. The second RoBERTa model performs feature extraction and fusion to obtain the feature word vector as the text output vector, which can solve the problem of insufficient BERT extracted features. The BERT-BiGRU model, on the other hand, mainly avoids the increase in the number of texts leading to long training time and overfitting, and uses a simpler GRU bi-word network as the main network to fully extract the contextual information of Chinese texts and finally complete the classification of Chinese texts; at the same time, it makes an outlook and conclusion on the new pre-training model for Chinese TC.","PeriodicalId":53637,"journal":{"name":"Icon","volume":"1 1","pages":"303-307"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study of Chinese Text Classification based on a new type of BERT pre-training\",\"authors\":\"Youyao Liu, Haimei Huang, Jialei Gao, Shihao Gai\",\"doi\":\"10.1109/ICNLP58431.2023.00062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chinese Text Classification (TC) is the process of mapping text to a pre-given topics category. In recent years, it has been found that TC is mainly based on RNN and BERT, so the development of different novel pre-training applied to Chinese TC is described as based on BERT pre-training. BERT combined with convolutional neural network is proposed to extend the BERT-CNN model for the problem of lack of semantic knowledge of BERT to derive a good classification effect. The second RoBERTa model performs feature extraction and fusion to obtain the feature word vector as the text output vector, which can solve the problem of insufficient BERT extracted features. The BERT-BiGRU model, on the other hand, mainly avoids the increase in the number of texts leading to long training time and overfitting, and uses a simpler GRU bi-word network as the main network to fully extract the contextual information of Chinese texts and finally complete the classification of Chinese texts; at the same time, it makes an outlook and conclusion on the new pre-training model for Chinese TC.\",\"PeriodicalId\":53637,\"journal\":{\"name\":\"Icon\",\"volume\":\"1 1\",\"pages\":\"303-307\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Icon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNLP58431.2023.00062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNLP58431.2023.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

中文文本分类(TC)是将文本映射到预先给定的主题类别的过程。近年来,人们发现机器学习主要是基于RNN和BERT,因此我们将各种新的预训练方法应用于中文机器学习的发展描述为基于BERT预训练。针对BERT缺乏语义知识的问题,提出BERT结合卷积神经网络对BERT- cnn模型进行扩展,以获得较好的分类效果。第二个RoBERTa模型进行特征提取和融合,得到特征词向量作为文本输出向量,解决了BERT提取特征不足的问题。而BERT-BiGRU模型则主要避免了文本数量增加导致训练时间过长和过拟合的问题,使用更简单的GRU双词网络作为主网络,充分提取中文文本的语境信息,最终完成中文文本的分类;同时,对新的汉语翻译预训练模型进行了展望和总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A study of Chinese Text Classification based on a new type of BERT pre-training
Chinese Text Classification (TC) is the process of mapping text to a pre-given topics category. In recent years, it has been found that TC is mainly based on RNN and BERT, so the development of different novel pre-training applied to Chinese TC is described as based on BERT pre-training. BERT combined with convolutional neural network is proposed to extend the BERT-CNN model for the problem of lack of semantic knowledge of BERT to derive a good classification effect. The second RoBERTa model performs feature extraction and fusion to obtain the feature word vector as the text output vector, which can solve the problem of insufficient BERT extracted features. The BERT-BiGRU model, on the other hand, mainly avoids the increase in the number of texts leading to long training time and overfitting, and uses a simpler GRU bi-word network as the main network to fully extract the contextual information of Chinese texts and finally complete the classification of Chinese texts; at the same time, it makes an outlook and conclusion on the new pre-training model for Chinese TC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Icon
Icon Arts and Humanities-History and Philosophy of Science
CiteScore
0.30
自引率
0.00%
发文量
0
期刊最新文献
Long-term Coherent Accumulation Algorithm Based on Radar Altimeter Deep Composite Kernels ELM Based on Spatial Feature Extraction for Hyperspectral Vegetation Image Classification Research based on improved SSD target detection algorithm CON-GAN-BERT: combining Contrastive Learning with Generative Adversarial Nets for Few-Shot Sentiment Classification A Two Stage Learning Algorithm for Hyperspectral Image Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1