一个用于地震波形第一运动极性分类的深度学习方法

Megha Chakraborty , Claudia Quinteros Cartaya , Wei Li , Johannes Faber , Georg Rümpker , Horst Stoecker , Nishtha Srivastava
{"title":"一个用于地震波形第一运动极性分类的深度学习方法","authors":"Megha Chakraborty ,&nbsp;Claudia Quinteros Cartaya ,&nbsp;Wei Li ,&nbsp;Johannes Faber ,&nbsp;Georg Rümpker ,&nbsp;Horst Stoecker ,&nbsp;Nishtha Srivastava","doi":"10.1016/j.aiig.2022.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>The polarity of first P-wave arrivals plays a significant role in the effective determination of focal mechanisms specially for smaller earthquakes. Manual estimation of polarities is not only time-consuming but also prone to human errors. This warrants a need for an automated algorithm for first motion polarity determination. We present a deep learning model - PolarCAP that uses an autoencoder architecture to identify first-motion polarities of earth-quake waveforms. PolarCAP is trained in a supervised fashion using more than 130,000 labelled traces from the Italian seismic dataset (INSTANCE) and is cross-validated on 22,000 traces to choose the most optimal set of hyperparameters. We obtain an accuracy of 0.98 on a completely unseen test dataset of almost 33,000 traces. Furthermore, we check the model generalizability by testing it on the datasets provided by previous works and show that our model achieves a higher recall on both positive and negative polarities.</p></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"3 ","pages":"Pages 46-52"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666544122000247/pdfft?md5=d6be5d6b020bf1632563d52940ffd36c&pid=1-s2.0-S2666544122000247-main.pdf","citationCount":"6","resultStr":"{\"title\":\"PolarCAP – A deep learning approach for first motion polarity classification of earthquake waveforms\",\"authors\":\"Megha Chakraborty ,&nbsp;Claudia Quinteros Cartaya ,&nbsp;Wei Li ,&nbsp;Johannes Faber ,&nbsp;Georg Rümpker ,&nbsp;Horst Stoecker ,&nbsp;Nishtha Srivastava\",\"doi\":\"10.1016/j.aiig.2022.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The polarity of first P-wave arrivals plays a significant role in the effective determination of focal mechanisms specially for smaller earthquakes. Manual estimation of polarities is not only time-consuming but also prone to human errors. This warrants a need for an automated algorithm for first motion polarity determination. We present a deep learning model - PolarCAP that uses an autoencoder architecture to identify first-motion polarities of earth-quake waveforms. PolarCAP is trained in a supervised fashion using more than 130,000 labelled traces from the Italian seismic dataset (INSTANCE) and is cross-validated on 22,000 traces to choose the most optimal set of hyperparameters. We obtain an accuracy of 0.98 on a completely unseen test dataset of almost 33,000 traces. Furthermore, we check the model generalizability by testing it on the datasets provided by previous works and show that our model achieves a higher recall on both positive and negative polarities.</p></div>\",\"PeriodicalId\":100124,\"journal\":{\"name\":\"Artificial Intelligence in Geosciences\",\"volume\":\"3 \",\"pages\":\"Pages 46-52\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666544122000247/pdfft?md5=d6be5d6b020bf1632563d52940ffd36c&pid=1-s2.0-S2666544122000247-main.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666544122000247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666544122000247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

第一次p波到达的极性在有效确定震源机制方面起着重要作用,特别是对于较小的地震。人工估算极性不仅耗时,而且容易出现人为错误。这证明需要一种自动算法来确定第一运动极性。我们提出了一个深度学习模型- PolarCAP,它使用自动编码器架构来识别地震波形的初动极性。利用意大利地震数据集(INSTANCE)中的130,000多条标记轨迹,以监督的方式对PolarCAP进行训练,并在22,000条轨迹上进行交叉验证,以选择最优的超参数集。我们在一个完全看不见的几乎33,000个痕迹的测试数据集上获得了0.98的精度。此外,我们通过在先前工作提供的数据集上测试模型来检验模型的泛化性,并表明我们的模型在正极性和负极性上都达到了更高的召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PolarCAP – A deep learning approach for first motion polarity classification of earthquake waveforms

The polarity of first P-wave arrivals plays a significant role in the effective determination of focal mechanisms specially for smaller earthquakes. Manual estimation of polarities is not only time-consuming but also prone to human errors. This warrants a need for an automated algorithm for first motion polarity determination. We present a deep learning model - PolarCAP that uses an autoencoder architecture to identify first-motion polarities of earth-quake waveforms. PolarCAP is trained in a supervised fashion using more than 130,000 labelled traces from the Italian seismic dataset (INSTANCE) and is cross-validated on 22,000 traces to choose the most optimal set of hyperparameters. We obtain an accuracy of 0.98 on a completely unseen test dataset of almost 33,000 traces. Furthermore, we check the model generalizability by testing it on the datasets provided by previous works and show that our model achieves a higher recall on both positive and negative polarities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
Convolutional sparse coding network for sparse seismic time-frequency representation Research on the prediction method for fluvial-phase sandbody connectivity based on big data analysis--a case study of Bohai a oilfield Pore size classification and prediction based on distribution of reservoir fluid volumes utilizing well logs and deep learning algorithm in a complex lithology Benchmarking data handling strategies for landslide susceptibility modeling using random forest workflows A 3D convolutional neural network model with multiple outputs for simultaneously estimating the reactive transport parameters of sandstone from its CT images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1