{"title":"采用磁致伸缩振动能量采集器的振动状态监测模块电源原型设计","authors":"M. Ito, H. Katsumura","doi":"10.1109/PowerMEMS49317.2019.51289500084","DOIUrl":null,"url":null,"abstract":"To be used as a power supply for a module monitoring the vibration condition, we built a prototype unit capable of storing the power generated by a compact magnetostrictive vibration energy harvester (VEH) in an electric double layer capacitor (EDLC), via a bridge rectifier circuit and boost converter. The prototype could store 3.1 J of energy within ten hours or so, from mechanical vibration of 100 Hz, $4\\mathrm{m}/ \\mathrm{s}^{2}$. The storage energy enables about 7800 times the triple-axis acceleration measurement and wireless transmission, or five times the operation of wireless vibration condition monitoring module commercially available. The EDLC storage efficiency was 25% compared to the effective value of magnetostrictive VEH output power. Despite the need to further boost efficiency, it is noteworthy that we could demonstrate scope to operate the vibration condition monitoring module using only the power generated by magnetostrictive VEH.","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"24 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prototyping of Power Supply for Vibration Condition Monitoring Modules using a Magnetostrictive Vibration Energy Harvester\",\"authors\":\"M. Ito, H. Katsumura\",\"doi\":\"10.1109/PowerMEMS49317.2019.51289500084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To be used as a power supply for a module monitoring the vibration condition, we built a prototype unit capable of storing the power generated by a compact magnetostrictive vibration energy harvester (VEH) in an electric double layer capacitor (EDLC), via a bridge rectifier circuit and boost converter. The prototype could store 3.1 J of energy within ten hours or so, from mechanical vibration of 100 Hz, $4\\\\mathrm{m}/ \\\\mathrm{s}^{2}$. The storage energy enables about 7800 times the triple-axis acceleration measurement and wireless transmission, or five times the operation of wireless vibration condition monitoring module commercially available. The EDLC storage efficiency was 25% compared to the effective value of magnetostrictive VEH output power. Despite the need to further boost efficiency, it is noteworthy that we could demonstrate scope to operate the vibration condition monitoring module using only the power generated by magnetostrictive VEH.\",\"PeriodicalId\":6648,\"journal\":{\"name\":\"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)\",\"volume\":\"24 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PowerMEMS49317.2019.51289500084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerMEMS49317.2019.51289500084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prototyping of Power Supply for Vibration Condition Monitoring Modules using a Magnetostrictive Vibration Energy Harvester
To be used as a power supply for a module monitoring the vibration condition, we built a prototype unit capable of storing the power generated by a compact magnetostrictive vibration energy harvester (VEH) in an electric double layer capacitor (EDLC), via a bridge rectifier circuit and boost converter. The prototype could store 3.1 J of energy within ten hours or so, from mechanical vibration of 100 Hz, $4\mathrm{m}/ \mathrm{s}^{2}$. The storage energy enables about 7800 times the triple-axis acceleration measurement and wireless transmission, or five times the operation of wireless vibration condition monitoring module commercially available. The EDLC storage efficiency was 25% compared to the effective value of magnetostrictive VEH output power. Despite the need to further boost efficiency, it is noteworthy that we could demonstrate scope to operate the vibration condition monitoring module using only the power generated by magnetostrictive VEH.