Michela Orsino, C. Perone, G. L. Fianza, L. Brunetti, F. Giametta, P. Catalano
{"title":"植物栽培密闭农业环境的小气候控制","authors":"Michela Orsino, C. Perone, G. L. Fianza, L. Brunetti, F. Giametta, P. Catalano","doi":"10.3303/CET2187039","DOIUrl":null,"url":null,"abstract":"Microclimatic control is having an increasingly widespread in confined agricultural environment. This is important especially for plants cultivations that tolerate thermal and hygrometric conditions significantly different. Nevertheless, there is much to do in automation and control technologies of this field to achieve the best results in both quantitative and qualitative terms of the products. This is true above all for horticultural crops, sensible to pedoclimatic and microclimatic environment of cultivation. Aim of this work is to characterize the microclimatic parameters in a confined agricultural environment with a perforated duct for the supply of the air conditioning. For this work a microclimatic control unit was used instead of lettuce plants. It was placed into a confined agricultural environment at different locations in the space to acquire the main microclimatic parameters. After setting the inputs of the microclimate environment, the tool measured a series of physical quantities (temperature, radiant temperature, humidity, and air speed). Tests were carried out taking as constant the optimal day temperature to grow lettuce, and by varying supply airflow rate, setting the fan speed at 30 %, 50 %, and 80 %. The results of these tests are essential to perform a real-time control of the microclimatic environment and to manage parameters for the optimization of the entire system. In addition, air speed tests showed an adequate speed decay and a good mixing of air. The values obtained are generally acceptable for indoor cultures and the created conditions are suitable for plants cultivation in this kind of environment.","PeriodicalId":9695,"journal":{"name":"Chemical engineering transactions","volume":"206 1","pages":"229-234"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microclimatic Control in Confined Agricultural Environment for Plants Cultivation\",\"authors\":\"Michela Orsino, C. Perone, G. L. Fianza, L. Brunetti, F. Giametta, P. Catalano\",\"doi\":\"10.3303/CET2187039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microclimatic control is having an increasingly widespread in confined agricultural environment. This is important especially for plants cultivations that tolerate thermal and hygrometric conditions significantly different. Nevertheless, there is much to do in automation and control technologies of this field to achieve the best results in both quantitative and qualitative terms of the products. This is true above all for horticultural crops, sensible to pedoclimatic and microclimatic environment of cultivation. Aim of this work is to characterize the microclimatic parameters in a confined agricultural environment with a perforated duct for the supply of the air conditioning. For this work a microclimatic control unit was used instead of lettuce plants. It was placed into a confined agricultural environment at different locations in the space to acquire the main microclimatic parameters. After setting the inputs of the microclimate environment, the tool measured a series of physical quantities (temperature, radiant temperature, humidity, and air speed). Tests were carried out taking as constant the optimal day temperature to grow lettuce, and by varying supply airflow rate, setting the fan speed at 30 %, 50 %, and 80 %. The results of these tests are essential to perform a real-time control of the microclimatic environment and to manage parameters for the optimization of the entire system. In addition, air speed tests showed an adequate speed decay and a good mixing of air. The values obtained are generally acceptable for indoor cultures and the created conditions are suitable for plants cultivation in this kind of environment.\",\"PeriodicalId\":9695,\"journal\":{\"name\":\"Chemical engineering transactions\",\"volume\":\"206 1\",\"pages\":\"229-234\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical engineering transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3303/CET2187039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical engineering transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3303/CET2187039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
Microclimatic Control in Confined Agricultural Environment for Plants Cultivation
Microclimatic control is having an increasingly widespread in confined agricultural environment. This is important especially for plants cultivations that tolerate thermal and hygrometric conditions significantly different. Nevertheless, there is much to do in automation and control technologies of this field to achieve the best results in both quantitative and qualitative terms of the products. This is true above all for horticultural crops, sensible to pedoclimatic and microclimatic environment of cultivation. Aim of this work is to characterize the microclimatic parameters in a confined agricultural environment with a perforated duct for the supply of the air conditioning. For this work a microclimatic control unit was used instead of lettuce plants. It was placed into a confined agricultural environment at different locations in the space to acquire the main microclimatic parameters. After setting the inputs of the microclimate environment, the tool measured a series of physical quantities (temperature, radiant temperature, humidity, and air speed). Tests were carried out taking as constant the optimal day temperature to grow lettuce, and by varying supply airflow rate, setting the fan speed at 30 %, 50 %, and 80 %. The results of these tests are essential to perform a real-time control of the microclimatic environment and to manage parameters for the optimization of the entire system. In addition, air speed tests showed an adequate speed decay and a good mixing of air. The values obtained are generally acceptable for indoor cultures and the created conditions are suitable for plants cultivation in this kind of environment.
期刊介绍:
Chemical Engineering Transactions (CET) aims to be a leading international journal for publication of original research and review articles in chemical, process, and environmental engineering. CET begin in 2002 as a vehicle for publication of high-quality papers in chemical engineering, connected with leading international conferences. In 2014, CET opened a new era as an internationally-recognised journal. Articles containing original research results, covering any aspect from molecular phenomena through to industrial case studies and design, with a strong influence of chemical engineering methodologies and ethos are particularly welcome. We encourage state-of-the-art contributions relating to the future of industrial processing, sustainable design, as well as transdisciplinary research that goes beyond the conventional bounds of chemical engineering. Short reviews on hot topics, emerging technologies, and other areas of high interest should highlight unsolved challenges and provide clear directions for future research. The journal publishes periodically with approximately 6 volumes per year. Core topic areas: -Batch processing- Biotechnology- Circular economy and integration- Environmental engineering- Fluid flow and fluid mechanics- Green materials and processing- Heat and mass transfer- Innovation engineering- Life cycle analysis and optimisation- Modelling and simulation- Operations and supply chain management- Particle technology- Process dynamics, flexibility, and control- Process integration and design- Process intensification and optimisation- Process safety- Product development- Reaction engineering- Renewable energy- Separation processes- Smart industry, city, and agriculture- Sustainability- Systems engineering- Thermodynamic- Waste minimisation, processing and management- Water and wastewater engineering