用几种软计算技术估算岩石I型断裂韧性的比较研究

E. Köken, Tümay Kadakci̇ Koca
{"title":"用几种软计算技术估算岩石I型断裂韧性的比较研究","authors":"E. Köken, Tümay Kadakci̇ Koca","doi":"10.31127/tuje.1120669","DOIUrl":null,"url":null,"abstract":"Fracture toughness is an important phenomenon to reveal the actual strength of fractured rock materials. It is, therefore, crucial to use the fracture toughness models principally for simulating the performance of fractured rock medium. In this study, the mode-I fracture toughness (KIC) was investigated using several soft computing techniques. For this purpose, an extensive literature survey was carried out to obtain a comprehensive database that includes simple and widely used mechanical rock parameters such as uniaxial compressive strength (UCS) and Brazilian tensile strength (BTS). Several soft computing techniques such as artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), gene expression programming (GEP), and multivariate adaptive regression spline (MARS) were attempted to reveal the availability of these methods to estimate the KIC. Among these techniques, it was determined that ANN presents the best prediction capability. The correlation of determination value (R2) for the proposed ANN model is 0.90, showing its relative success. In this manner, the present study can be declared a case study, indicating the applicability of several soft computing techniques for the evaluation of KIC. However, the number of samples and independent variables should be increased to improve the established predictive models in future studies.","PeriodicalId":23377,"journal":{"name":"Turkish Journal of Engineering and Environmental Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A comparative study to estimate the mode I fracture toughness of rocks using several soft computing techniques\",\"authors\":\"E. Köken, Tümay Kadakci̇ Koca\",\"doi\":\"10.31127/tuje.1120669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fracture toughness is an important phenomenon to reveal the actual strength of fractured rock materials. It is, therefore, crucial to use the fracture toughness models principally for simulating the performance of fractured rock medium. In this study, the mode-I fracture toughness (KIC) was investigated using several soft computing techniques. For this purpose, an extensive literature survey was carried out to obtain a comprehensive database that includes simple and widely used mechanical rock parameters such as uniaxial compressive strength (UCS) and Brazilian tensile strength (BTS). Several soft computing techniques such as artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), gene expression programming (GEP), and multivariate adaptive regression spline (MARS) were attempted to reveal the availability of these methods to estimate the KIC. Among these techniques, it was determined that ANN presents the best prediction capability. The correlation of determination value (R2) for the proposed ANN model is 0.90, showing its relative success. In this manner, the present study can be declared a case study, indicating the applicability of several soft computing techniques for the evaluation of KIC. However, the number of samples and independent variables should be increased to improve the established predictive models in future studies.\",\"PeriodicalId\":23377,\"journal\":{\"name\":\"Turkish Journal of Engineering and Environmental Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Engineering and Environmental Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31127/tuje.1120669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Engineering and Environmental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31127/tuje.1120669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

断裂韧性是反映断裂岩石材料实际强度的重要现象。因此,主要使用断裂韧性模型来模拟破裂岩石介质的性能是至关重要的。本文采用几种软计算技术研究了i型断裂韧性(KIC)。为此,进行了广泛的文献调查,以获得一个全面的数据库,其中包括简单且广泛使用的岩石力学参数,如单轴抗压强度(UCS)和巴西抗拉强度(BTS)。利用人工神经网络(ANN)、自适应神经模糊推理系统(ANFIS)、基因表达编程(GEP)和多元自适应回归样条(MARS)等软计算技术,揭示了这些方法估计KIC的有效性。在这些技术中,人工神经网络的预测能力最好。所提出的人工神经网络模型的判定值(R2)的相关系数为0.90,表明该模型相对成功。通过这种方式,本研究可以被宣布为案例研究,表明几种软计算技术对KIC评估的适用性。但是,在今后的研究中,还需要增加样本和自变量的数量来完善已经建立的预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comparative study to estimate the mode I fracture toughness of rocks using several soft computing techniques
Fracture toughness is an important phenomenon to reveal the actual strength of fractured rock materials. It is, therefore, crucial to use the fracture toughness models principally for simulating the performance of fractured rock medium. In this study, the mode-I fracture toughness (KIC) was investigated using several soft computing techniques. For this purpose, an extensive literature survey was carried out to obtain a comprehensive database that includes simple and widely used mechanical rock parameters such as uniaxial compressive strength (UCS) and Brazilian tensile strength (BTS). Several soft computing techniques such as artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), gene expression programming (GEP), and multivariate adaptive regression spline (MARS) were attempted to reveal the availability of these methods to estimate the KIC. Among these techniques, it was determined that ANN presents the best prediction capability. The correlation of determination value (R2) for the proposed ANN model is 0.90, showing its relative success. In this manner, the present study can be declared a case study, indicating the applicability of several soft computing techniques for the evaluation of KIC. However, the number of samples and independent variables should be increased to improve the established predictive models in future studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Solution‐Based Fabrication of Copper Oxide Thin Film Influence of Transition Metal (Cobalt) Doping on Structural, Morphological, Electrical, and Optical Properties Optimal Power Flow Analysis with Circulatory System-Based Optimization Algorithm Counterface Soil Type and Loading Condition Effects on Granular/Cohesive Soil – Geofoam Interface Shear Behavior Comparison of CNN-Based Methods for Yoga Pose Classification Prediction of elevation points using three different heuristic regression techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1