利用香蕉花提取物合成绿色纳米银,并对其抗菌活性进行研究

IF 0.7 4区 农林科学 Q4 FOOD SCIENCE & TECHNOLOGY international food research journal Pub Date : 2023-06-21 DOI:10.47836/ifrj.30.3.06
Weiming Gu, Quanfeng Huang, Jianxia Sun, Dan Liu, X. Duan
{"title":"利用香蕉花提取物合成绿色纳米银,并对其抗菌活性进行研究","authors":"Weiming Gu, Quanfeng Huang, Jianxia Sun, Dan Liu, X. Duan","doi":"10.47836/ifrj.30.3.06","DOIUrl":null,"url":null,"abstract":"Silver nanoparticles (AgNPs) were synthesised using banana flower extract (BFE) as a reducing and stabilising agent. Spherical, well-dispersed, and stable AgNPs were formed and characterised by ultraviolet-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), and zeta potential. The in vitro antimicrobial properties of AgNPs against Staphylococcus aureus and Escherichia coli were then investigated. The minimum inhibitory concentration (MIC) of AgNPs against S. aureus and E. coli were 32 and 16 μg/mL, respectively. E. coli was more sensitive to AgNPs than S. aureus due to differences in cell wall structures of the bacteria. Regarding the bactericidal mechanisms of AgNPs, an increase in cell permeability and a distinctive deformation in cellular morphology was observed. The antibacterial effect decreased with the addition of the antioxidant N-acetyl-l-cysteine (NAC) which acted as ROS scavenger. In summary, the antibacterial mechanism was likely a combination of cell membrane damage and ROS induction.","PeriodicalId":13754,"journal":{"name":"international food research journal","volume":"24 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green synthesis of silver nanoparticles using banana flower extract, and their antibacterial activity\",\"authors\":\"Weiming Gu, Quanfeng Huang, Jianxia Sun, Dan Liu, X. Duan\",\"doi\":\"10.47836/ifrj.30.3.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silver nanoparticles (AgNPs) were synthesised using banana flower extract (BFE) as a reducing and stabilising agent. Spherical, well-dispersed, and stable AgNPs were formed and characterised by ultraviolet-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), and zeta potential. The in vitro antimicrobial properties of AgNPs against Staphylococcus aureus and Escherichia coli were then investigated. The minimum inhibitory concentration (MIC) of AgNPs against S. aureus and E. coli were 32 and 16 μg/mL, respectively. E. coli was more sensitive to AgNPs than S. aureus due to differences in cell wall structures of the bacteria. Regarding the bactericidal mechanisms of AgNPs, an increase in cell permeability and a distinctive deformation in cellular morphology was observed. The antibacterial effect decreased with the addition of the antioxidant N-acetyl-l-cysteine (NAC) which acted as ROS scavenger. In summary, the antibacterial mechanism was likely a combination of cell membrane damage and ROS induction.\",\"PeriodicalId\":13754,\"journal\":{\"name\":\"international food research journal\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"international food research journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.47836/ifrj.30.3.06\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"international food research journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.47836/ifrj.30.3.06","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

以香蕉花提取物(BFE)为还原剂和稳定剂合成了纳米银。通过紫外-可见光谱(UV-vis)、透射电子显微镜(TEM)、x射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、热重分析(TGA)和zeta电位对制备的球形、分散良好、稳定的AgNPs进行了表征。研究了AgNPs对金黄色葡萄球菌和大肠杆菌的体外抑菌性能。AgNPs对金黄色葡萄球菌和大肠杆菌的最低抑制浓度(MIC)分别为32和16 μg/mL。由于大肠杆菌细胞壁结构的差异,大肠杆菌对AgNPs比金黄色葡萄球菌更敏感。关于AgNPs的杀菌机制,观察到细胞通透性增加和细胞形态的明显变形。随着抗氧化剂n -乙酰-l-半胱氨酸(NAC)的加入,抗菌效果下降,NAC具有清除ROS的作用。综上所述,抗菌机制可能是细胞膜损伤和ROS诱导的结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Green synthesis of silver nanoparticles using banana flower extract, and their antibacterial activity
Silver nanoparticles (AgNPs) were synthesised using banana flower extract (BFE) as a reducing and stabilising agent. Spherical, well-dispersed, and stable AgNPs were formed and characterised by ultraviolet-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), and zeta potential. The in vitro antimicrobial properties of AgNPs against Staphylococcus aureus and Escherichia coli were then investigated. The minimum inhibitory concentration (MIC) of AgNPs against S. aureus and E. coli were 32 and 16 μg/mL, respectively. E. coli was more sensitive to AgNPs than S. aureus due to differences in cell wall structures of the bacteria. Regarding the bactericidal mechanisms of AgNPs, an increase in cell permeability and a distinctive deformation in cellular morphology was observed. The antibacterial effect decreased with the addition of the antioxidant N-acetyl-l-cysteine (NAC) which acted as ROS scavenger. In summary, the antibacterial mechanism was likely a combination of cell membrane damage and ROS induction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
international food research journal
international food research journal Agricultural and Biological Sciences-Food Science
CiteScore
1.40
自引率
0.00%
发文量
75
期刊介绍: The International Food Research Journal (IFRJ) publishes papers in English, six (6) issues a year with the coverage of: Food Science and Technology Nutrition and Dietetics Agriculture, multidisciplinary Chemistry, multidisciplinary The scope of the Journal includes: Food Science, Food Technology and Food Biotechnology Product Development and Sensory Evaluation Food Habits, Nutrition, and Health Food Safety and Quality Food Chemistry, Food Microbiology, Food Analysis and Testing Food Engineering Food Packaging Food Waste Management Food Entrepreneur Food Regulatory Post-Harvest Food Management Food Supply Chain Management Halal Food and Management
期刊最新文献
Effect of peeling, filling medium, and storage on the antioxidant activity and phenolic compounds of canned figs (Ficus carica L.) Multiresidue analysis and health risk assessment of sulfonamides and quinolones from edible Batrachia and other aquatic products Modified atmosphere packaging of flounder fillet: Modelling of package conditions and comparison of different flushing atmospheres for quality preservation A 28-day subacute oral toxicity study of Apis cerana (Fabricius) honey in Wistar rats Set yoghurt processing with eggs as milk replacements, and improvement of texture, rheology, and microstructure by formulation design and optimisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1