{"title":"电动汽车超高速电池充电器三电平整流器的数字多环控制","authors":"D. Cittanti, M. Gregorio, R. Bojoi","doi":"10.23919/AEIT50178.2020.9241196","DOIUrl":null,"url":null,"abstract":"This paper proposes a digital multi-loop control strategy for a 3-level unidirectional rectifier specifically targeted to electric vehicle (EV) ultra-fast charging applications. The basic operation of a 3-level rectifier is described and the state-space model of the complete system is explained, with particular focus on the mid-point current generation process. By means of an appropriate modeling of the delays and the discretization introduced by the digital control implementation, four controllers (i.e. dq-currents, DC-link voltage and mid-point voltage balancing loops) are analytically designed in the continuous time domain with conventional techniques. Ultimately, the proposed controller design procedure is tested on a 50 kW, 20kHzT-type rectifier, both in simulation and hardware-in-the-loop (HIL) environments, verifying the dynamical performance of all control loops.","PeriodicalId":6689,"journal":{"name":"2020 AEIT International Annual Conference (AEIT)","volume":"21 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Digital Multi-Loop Control of a 3-Level Rectifier for Electric Vehicle Ultra-Fast Battery Chargers\",\"authors\":\"D. Cittanti, M. Gregorio, R. Bojoi\",\"doi\":\"10.23919/AEIT50178.2020.9241196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a digital multi-loop control strategy for a 3-level unidirectional rectifier specifically targeted to electric vehicle (EV) ultra-fast charging applications. The basic operation of a 3-level rectifier is described and the state-space model of the complete system is explained, with particular focus on the mid-point current generation process. By means of an appropriate modeling of the delays and the discretization introduced by the digital control implementation, four controllers (i.e. dq-currents, DC-link voltage and mid-point voltage balancing loops) are analytically designed in the continuous time domain with conventional techniques. Ultimately, the proposed controller design procedure is tested on a 50 kW, 20kHzT-type rectifier, both in simulation and hardware-in-the-loop (HIL) environments, verifying the dynamical performance of all control loops.\",\"PeriodicalId\":6689,\"journal\":{\"name\":\"2020 AEIT International Annual Conference (AEIT)\",\"volume\":\"21 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 AEIT International Annual Conference (AEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/AEIT50178.2020.9241196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 AEIT International Annual Conference (AEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AEIT50178.2020.9241196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Digital Multi-Loop Control of a 3-Level Rectifier for Electric Vehicle Ultra-Fast Battery Chargers
This paper proposes a digital multi-loop control strategy for a 3-level unidirectional rectifier specifically targeted to electric vehicle (EV) ultra-fast charging applications. The basic operation of a 3-level rectifier is described and the state-space model of the complete system is explained, with particular focus on the mid-point current generation process. By means of an appropriate modeling of the delays and the discretization introduced by the digital control implementation, four controllers (i.e. dq-currents, DC-link voltage and mid-point voltage balancing loops) are analytically designed in the continuous time domain with conventional techniques. Ultimately, the proposed controller design procedure is tested on a 50 kW, 20kHzT-type rectifier, both in simulation and hardware-in-the-loop (HIL) environments, verifying the dynamical performance of all control loops.