{"title":"基于位置的强化学习偏向MCTS的一般视频游戏","authors":"C. Chu, Suguru Ito, Tomohiro Harada, R. Thawonmas","doi":"10.1109/CIG.2016.7860449","DOIUrl":null,"url":null,"abstract":"This paper proposes an application of reinforcement learning and position-based features in rollout bias training of Monte-Carlo Tree Search (MCTS) for General Video Game Playing (GVGP). As an improvement on Knowledge-based Fast-Evo MCTS proposed by Perez et al., the proposed method is designated for both the GVG-AI Competition and improvement of the learning mechanism of the original method. The performance of the proposed method is evaluated empirically, using all games from six training sets available in the GVG-AI Framework, and the proposed method achieves better scores than five other existing MCTS-based methods overall.","PeriodicalId":6594,"journal":{"name":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"24 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Position-based reinforcement learning biased MCTS for General Video Game Playing\",\"authors\":\"C. Chu, Suguru Ito, Tomohiro Harada, R. Thawonmas\",\"doi\":\"10.1109/CIG.2016.7860449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an application of reinforcement learning and position-based features in rollout bias training of Monte-Carlo Tree Search (MCTS) for General Video Game Playing (GVGP). As an improvement on Knowledge-based Fast-Evo MCTS proposed by Perez et al., the proposed method is designated for both the GVG-AI Competition and improvement of the learning mechanism of the original method. The performance of the proposed method is evaluated empirically, using all games from six training sets available in the GVG-AI Framework, and the proposed method achieves better scores than five other existing MCTS-based methods overall.\",\"PeriodicalId\":6594,\"journal\":{\"name\":\"2016 IEEE Conference on Computational Intelligence and Games (CIG)\",\"volume\":\"24 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computational Intelligence and Games (CIG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2016.7860449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2016.7860449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Position-based reinforcement learning biased MCTS for General Video Game Playing
This paper proposes an application of reinforcement learning and position-based features in rollout bias training of Monte-Carlo Tree Search (MCTS) for General Video Game Playing (GVGP). As an improvement on Knowledge-based Fast-Evo MCTS proposed by Perez et al., the proposed method is designated for both the GVG-AI Competition and improvement of the learning mechanism of the original method. The performance of the proposed method is evaluated empirically, using all games from six training sets available in the GVG-AI Framework, and the proposed method achieves better scores than five other existing MCTS-based methods overall.