基于位置的强化学习偏向MCTS的一般视频游戏

C. Chu, Suguru Ito, Tomohiro Harada, R. Thawonmas
{"title":"基于位置的强化学习偏向MCTS的一般视频游戏","authors":"C. Chu, Suguru Ito, Tomohiro Harada, R. Thawonmas","doi":"10.1109/CIG.2016.7860449","DOIUrl":null,"url":null,"abstract":"This paper proposes an application of reinforcement learning and position-based features in rollout bias training of Monte-Carlo Tree Search (MCTS) for General Video Game Playing (GVGP). As an improvement on Knowledge-based Fast-Evo MCTS proposed by Perez et al., the proposed method is designated for both the GVG-AI Competition and improvement of the learning mechanism of the original method. The performance of the proposed method is evaluated empirically, using all games from six training sets available in the GVG-AI Framework, and the proposed method achieves better scores than five other existing MCTS-based methods overall.","PeriodicalId":6594,"journal":{"name":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"24 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Position-based reinforcement learning biased MCTS for General Video Game Playing\",\"authors\":\"C. Chu, Suguru Ito, Tomohiro Harada, R. Thawonmas\",\"doi\":\"10.1109/CIG.2016.7860449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an application of reinforcement learning and position-based features in rollout bias training of Monte-Carlo Tree Search (MCTS) for General Video Game Playing (GVGP). As an improvement on Knowledge-based Fast-Evo MCTS proposed by Perez et al., the proposed method is designated for both the GVG-AI Competition and improvement of the learning mechanism of the original method. The performance of the proposed method is evaluated empirically, using all games from six training sets available in the GVG-AI Framework, and the proposed method achieves better scores than five other existing MCTS-based methods overall.\",\"PeriodicalId\":6594,\"journal\":{\"name\":\"2016 IEEE Conference on Computational Intelligence and Games (CIG)\",\"volume\":\"24 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computational Intelligence and Games (CIG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2016.7860449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2016.7860449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种强化学习和基于位置的特征在通用视频游戏(GVGP)的蒙特卡罗树搜索(MCTS)的推出偏差训练中的应用。该方法是对Perez等人提出的基于知识的Fast-Evo MCTS的改进,既用于GVG-AI竞争,又改进了原方法的学习机制。使用GVG-AI框架中六个训练集的所有游戏对所提出方法的性能进行了经验评估,所提出的方法总体上比其他五种基于mcts的方法获得了更好的分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Position-based reinforcement learning biased MCTS for General Video Game Playing
This paper proposes an application of reinforcement learning and position-based features in rollout bias training of Monte-Carlo Tree Search (MCTS) for General Video Game Playing (GVGP). As an improvement on Knowledge-based Fast-Evo MCTS proposed by Perez et al., the proposed method is designated for both the GVG-AI Competition and improvement of the learning mechanism of the original method. The performance of the proposed method is evaluated empirically, using all games from six training sets available in the GVG-AI Framework, and the proposed method achieves better scores than five other existing MCTS-based methods overall.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human gesture classification by brute-force machine learning for exergaming in physiotherapy Evolving micro for 3D Real-Time Strategy games Constrained surprise search for content generation Design influence on player retention: A method based on time varying survival analysis Deep Q-learning using redundant outputs in visual doom
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1