基于无监督学习的植物叶片病虫害应用研究

Mingjing Pei, Min Kong, MaoSheng Fu, Xiancun Zhou, Zusong Li, Jieru Xu
{"title":"基于无监督学习的植物叶片病虫害应用研究","authors":"Mingjing Pei, Min Kong, MaoSheng Fu, Xiancun Zhou, Zusong Li, Jieru Xu","doi":"10.1109/cvidliccea56201.2022.9824321","DOIUrl":null,"url":null,"abstract":"In agricultural productivity, detecting plant pests and diseases is extremely crucial. This research studies images of plant leaf pests and diseases from an unsupervised perspective to solve the problem that existing plant leaf disease datasets are difficult to acquire and include few types of diseases, and they cannot find the defective parts of leaves. This paper utilizes the idea of image restoration and uses a deep learning correlation model to detect and localize the abnormal regions of plant leaves. The experimental results show that the img_AUCROC and pixel_AUCROC level anomaly detection and localization achieve good results, which bring influence and reference to other peers.","PeriodicalId":23649,"journal":{"name":"Vision","volume":"2 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application research of plant leaf pests and diseases base on unsupervised learning\",\"authors\":\"Mingjing Pei, Min Kong, MaoSheng Fu, Xiancun Zhou, Zusong Li, Jieru Xu\",\"doi\":\"10.1109/cvidliccea56201.2022.9824321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In agricultural productivity, detecting plant pests and diseases is extremely crucial. This research studies images of plant leaf pests and diseases from an unsupervised perspective to solve the problem that existing plant leaf disease datasets are difficult to acquire and include few types of diseases, and they cannot find the defective parts of leaves. This paper utilizes the idea of image restoration and uses a deep learning correlation model to detect and localize the abnormal regions of plant leaves. The experimental results show that the img_AUCROC and pixel_AUCROC level anomaly detection and localization achieve good results, which bring influence and reference to other peers.\",\"PeriodicalId\":23649,\"journal\":{\"name\":\"Vision\",\"volume\":\"2 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/cvidliccea56201.2022.9824321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvidliccea56201.2022.9824321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在农业生产力中,植物病虫害检测至关重要。本研究从无监督的角度对植物叶片病虫害图像进行研究,以解决现有植物叶片病虫害数据集难以获取、病害种类少、无法发现叶片缺陷部位的问题。本文利用图像恢复的思想,利用深度学习相关模型对植物叶片的异常区域进行检测和定位。实验结果表明,img_AUCROC和pixel_AUCROC级别的异常检测和定位取得了较好的效果,对其他同行具有一定的影响和借鉴意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application research of plant leaf pests and diseases base on unsupervised learning
In agricultural productivity, detecting plant pests and diseases is extremely crucial. This research studies images of plant leaf pests and diseases from an unsupervised perspective to solve the problem that existing plant leaf disease datasets are difficult to acquire and include few types of diseases, and they cannot find the defective parts of leaves. This paper utilizes the idea of image restoration and uses a deep learning correlation model to detect and localize the abnormal regions of plant leaves. The experimental results show that the img_AUCROC and pixel_AUCROC level anomaly detection and localization achieve good results, which bring influence and reference to other peers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Eye Axial Length Measurements Taken Using Partial Coherence Interferometry and OCT Biometry The Effect of the Zonular Fiber Angle of Insertion on Accommodation Perceptual Biases in the Interpretation of Non-Rigid Shape Transformations from Motion A New Model of a Macular Buckle and a Refined Surgical Technique for the Treatment of Myopic Traction Maculopathy Eyes on Memory: Pupillometry in Encoding and Retrieval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1