Rezky Rachmadany Rachman, S. Dewang, S. Astuty, E. Juarlin
{"title":"基于glcm的K-NN特征提取与Naïve贝叶斯分类的胸部ct扫描图像Covid-19检测","authors":"Rezky Rachmadany Rachman, S. Dewang, S. Astuty, E. Juarlin","doi":"10.29322/ijsrp.12.08.2022.p12859","DOIUrl":null,"url":null,"abstract":"- Covid-19 is a virus that has spread and become a global pandemic. This virus infected the vital human organ, which is the lungs. Therefore, this research identified Covid-19 and non-covid-19 diseases based on chest CT-Scan images using K-NN and Naïve Bayes classification methods. The system is constructed through pre-processing, segmentation, GLCM-based feature extraction, and dividing the testing and training data with K-fold cross-validation with the value of 5 and 10, then evaluated using Confusion Matrix. The algorithm accuracy value from the K-NN classification model is obtained as 99,6% and Naïve Bayes got the value of 93,5%. In comparison, the K-NN method obtained the highest sensitivity level with a value of 100% and a specificity value of 98.4% for the two methods used. In this test, the K-NN classifier method is more appropriate than the Naïve Bayes method because some features of GLCM","PeriodicalId":14290,"journal":{"name":"International Journal of Scientific and Research Publications (IJSRP)","volume":"474 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Covid-19 Detection on Chest CT-Scan Image Using GLCM-Based Feature Extraction with K-NN and Naïve Bayes Classification\",\"authors\":\"Rezky Rachmadany Rachman, S. Dewang, S. Astuty, E. Juarlin\",\"doi\":\"10.29322/ijsrp.12.08.2022.p12859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"- Covid-19 is a virus that has spread and become a global pandemic. This virus infected the vital human organ, which is the lungs. Therefore, this research identified Covid-19 and non-covid-19 diseases based on chest CT-Scan images using K-NN and Naïve Bayes classification methods. The system is constructed through pre-processing, segmentation, GLCM-based feature extraction, and dividing the testing and training data with K-fold cross-validation with the value of 5 and 10, then evaluated using Confusion Matrix. The algorithm accuracy value from the K-NN classification model is obtained as 99,6% and Naïve Bayes got the value of 93,5%. In comparison, the K-NN method obtained the highest sensitivity level with a value of 100% and a specificity value of 98.4% for the two methods used. In this test, the K-NN classifier method is more appropriate than the Naïve Bayes method because some features of GLCM\",\"PeriodicalId\":14290,\"journal\":{\"name\":\"International Journal of Scientific and Research Publications (IJSRP)\",\"volume\":\"474 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Scientific and Research Publications (IJSRP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29322/ijsrp.12.08.2022.p12859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific and Research Publications (IJSRP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29322/ijsrp.12.08.2022.p12859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Covid-19 Detection on Chest CT-Scan Image Using GLCM-Based Feature Extraction with K-NN and Naïve Bayes Classification
- Covid-19 is a virus that has spread and become a global pandemic. This virus infected the vital human organ, which is the lungs. Therefore, this research identified Covid-19 and non-covid-19 diseases based on chest CT-Scan images using K-NN and Naïve Bayes classification methods. The system is constructed through pre-processing, segmentation, GLCM-based feature extraction, and dividing the testing and training data with K-fold cross-validation with the value of 5 and 10, then evaluated using Confusion Matrix. The algorithm accuracy value from the K-NN classification model is obtained as 99,6% and Naïve Bayes got the value of 93,5%. In comparison, the K-NN method obtained the highest sensitivity level with a value of 100% and a specificity value of 98.4% for the two methods used. In this test, the K-NN classifier method is more appropriate than the Naïve Bayes method because some features of GLCM