从特定视点表征到视点不变表征对人脸身份的追求

Ting Zhang, Qiulei Dong, Zhanyi Hu
{"title":"从特定视点表征到视点不变表征对人脸身份的追求","authors":"Ting Zhang, Qiulei Dong, Zhanyi Hu","doi":"10.1109/ICIP.2016.7532959","DOIUrl":null,"url":null,"abstract":"How to learn view-invariant facial representations is an important task for view-invariant face recognition. The recent work [1] discovered that the brain of the macaque monkey has a face-processing network, where some neurons are view-specific. Motivated by this discovery, this paper proposes a deep convolutional learning model for face recognition, which explicitly enforces this view-specific mechanism for learning view-invariant facial representations. The proposed model consists of two concatenated modules: the first one is a convolutional neural network (CNN) for learning the corresponding viewing pose to the input face image; the second one consists of multiple CNNs, each of which learns the corresponding frontal image of an image under a specific viewing pose. This method is of low computational cost, and it can be well trained with a relatively small number of samples. The experimental results on the MultiPIE dataset demonstrate the effectiveness of our proposed convolutional model in contrast to three state-of-the-art works.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"24 1","pages":"3244-3248"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Pursuing face identity from view-specific representation to view-invariant representation\",\"authors\":\"Ting Zhang, Qiulei Dong, Zhanyi Hu\",\"doi\":\"10.1109/ICIP.2016.7532959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How to learn view-invariant facial representations is an important task for view-invariant face recognition. The recent work [1] discovered that the brain of the macaque monkey has a face-processing network, where some neurons are view-specific. Motivated by this discovery, this paper proposes a deep convolutional learning model for face recognition, which explicitly enforces this view-specific mechanism for learning view-invariant facial representations. The proposed model consists of two concatenated modules: the first one is a convolutional neural network (CNN) for learning the corresponding viewing pose to the input face image; the second one consists of multiple CNNs, each of which learns the corresponding frontal image of an image under a specific viewing pose. This method is of low computational cost, and it can be well trained with a relatively small number of samples. The experimental results on the MultiPIE dataset demonstrate the effectiveness of our proposed convolutional model in contrast to three state-of-the-art works.\",\"PeriodicalId\":6521,\"journal\":{\"name\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"24 1\",\"pages\":\"3244-3248\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2016.7532959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

如何学习视觉不变的人脸表征是视觉不变人脸识别的一个重要课题。最近的研究[1]发现,猕猴的大脑有一个面部处理网络,其中一些神经元是特定于视觉的。基于这一发现,本文提出了一种用于人脸识别的深度卷积学习模型,该模型明确地执行了这种特定于视图的机制来学习视图不变的面部表征。该模型由两个串联模块组成:第一个模块是卷积神经网络(CNN),用于学习输入人脸图像的相应观看姿态;第二种方法由多个cnn组成,每个cnn学习特定观看姿势下图像对应的正面图像。该方法计算成本低,并且可以用相对较少的样本进行很好的训练。在MultiPIE数据集上的实验结果证明了我们提出的卷积模型与三个最新研究成果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pursuing face identity from view-specific representation to view-invariant representation
How to learn view-invariant facial representations is an important task for view-invariant face recognition. The recent work [1] discovered that the brain of the macaque monkey has a face-processing network, where some neurons are view-specific. Motivated by this discovery, this paper proposes a deep convolutional learning model for face recognition, which explicitly enforces this view-specific mechanism for learning view-invariant facial representations. The proposed model consists of two concatenated modules: the first one is a convolutional neural network (CNN) for learning the corresponding viewing pose to the input face image; the second one consists of multiple CNNs, each of which learns the corresponding frontal image of an image under a specific viewing pose. This method is of low computational cost, and it can be well trained with a relatively small number of samples. The experimental results on the MultiPIE dataset demonstrate the effectiveness of our proposed convolutional model in contrast to three state-of-the-art works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content-adaptive pyramid representation for 3D object classification Automating the measurement of physiological parameters: A case study in the image analysis of cilia motion Horizon based orientation estimation for planetary surface navigation Softcast with per-carrier power-constrained channels Speeding-up a convolutional neural network by connecting an SVM network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1