基于神经网络的体感诱发电位检测生物噪声美白方法

D.B. Smith, D. Lovely
{"title":"基于神经网络的体感诱发电位检测生物噪声美白方法","authors":"D.B. Smith, D. Lovely","doi":"10.1109/IEMBS.1995.575371","DOIUrl":null,"url":null,"abstract":"A matched filter is the optimal technique for detecting a known signal buried in additive white noise. Surface recorded somatosensory evoked potentials are corrupted with non-white noise, and so must be whitened before being passed to a matched filter. The authors evaluated the viability of selected artificial neural networks in whitening the noise of recorded evoked potentials.","PeriodicalId":20509,"journal":{"name":"Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society","volume":"38 1","pages":"803-804 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A neural network based approach to whitening biological noise for somatosensory evoked potential detection\",\"authors\":\"D.B. Smith, D. Lovely\",\"doi\":\"10.1109/IEMBS.1995.575371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A matched filter is the optimal technique for detecting a known signal buried in additive white noise. Surface recorded somatosensory evoked potentials are corrupted with non-white noise, and so must be whitened before being passed to a matched filter. The authors evaluated the viability of selected artificial neural networks in whitening the noise of recorded evoked potentials.\",\"PeriodicalId\":20509,\"journal\":{\"name\":\"Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society\",\"volume\":\"38 1\",\"pages\":\"803-804 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMBS.1995.575371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1995.575371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

匹配滤波器是检测隐藏在加性白噪声中的已知信号的最佳技术。表面记录的体感诱发电位被非白噪声破坏,因此必须在传递到匹配的滤波器之前进行漂白。作者评价了所选择的人工神经网络对记录的诱发电位噪声进行漂白的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A neural network based approach to whitening biological noise for somatosensory evoked potential detection
A matched filter is the optimal technique for detecting a known signal buried in additive white noise. Surface recorded somatosensory evoked potentials are corrupted with non-white noise, and so must be whitened before being passed to a matched filter. The authors evaluated the viability of selected artificial neural networks in whitening the noise of recorded evoked potentials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic seizure detection in newborns and infants Functional conditioning of skeletal muscle ventricles Electrical interactions between cardiac cells studied with "model clamp" An intelligent airway sensor system to increase safety in computer controlled mechanical ventilation A distributed health information network for consultative services in surgical pathology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1