提高光电催化性能的光生孔调制

IF 3.3 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER Superlattices and Microstructures Pub Date : 2022-01-01 DOI:10.20517/microstructures.2022.23
N. Liu, Yixian Liu, Yunliang Liu, Yaxi Li, Yuanyuan Cheng, Hai-tao Li
{"title":"提高光电催化性能的光生孔调制","authors":"N. Liu, Yixian Liu, Yunliang Liu, Yaxi Li, Yuanyuan Cheng, Hai-tao Li","doi":"10.20517/microstructures.2022.23","DOIUrl":null,"url":null,"abstract":"Utilizing clean energy derived from photoelectrocatalytic reactions is expected to be an excellent choice to fundamentally solve the problem of the human energy crisis. Photoelectrochemical (PEC) cell can effectively promote charge separation and improve solar energy conversion efficiency since it combines the advantages of photocatalysis and electrocatalysis. However, the hole transfer and subsequent oxidation reaction in the PEC process are slow, resulting in the rapid recombination of photogenerated electron-hole pairs and low PEC performance. The half-oxidation reaction involving photogenerated holes is the bottleneck of PEC water splitting. Therefore, hole modulation has been an important research area in the field of catalysis. However, compared with electron modulation, research on hole modulation is limited and still faces great challenges. It is therefore of great significance to develop effective modulation strategies for photogenerated holes. This review summarizes the hole modulation strategies developed in the last five years, including hole sacrificial agents, nanostructural modification, heterostructure construction and cocatalyst modification. Hole modulation dynamics studies, such as transient absorption spectroscopy, time-resolved photoluminescence spectroscopy, transient photovoltage and scanning electrochemical microscopy, are also summarized. Moreover, relevant conclusions and an outlook are proposed.","PeriodicalId":22044,"journal":{"name":"Superlattices and Microstructures","volume":"73 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Modulation of photogenerated holes for enhanced photoelectrocatalytic performance\",\"authors\":\"N. Liu, Yixian Liu, Yunliang Liu, Yaxi Li, Yuanyuan Cheng, Hai-tao Li\",\"doi\":\"10.20517/microstructures.2022.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Utilizing clean energy derived from photoelectrocatalytic reactions is expected to be an excellent choice to fundamentally solve the problem of the human energy crisis. Photoelectrochemical (PEC) cell can effectively promote charge separation and improve solar energy conversion efficiency since it combines the advantages of photocatalysis and electrocatalysis. However, the hole transfer and subsequent oxidation reaction in the PEC process are slow, resulting in the rapid recombination of photogenerated electron-hole pairs and low PEC performance. The half-oxidation reaction involving photogenerated holes is the bottleneck of PEC water splitting. Therefore, hole modulation has been an important research area in the field of catalysis. However, compared with electron modulation, research on hole modulation is limited and still faces great challenges. It is therefore of great significance to develop effective modulation strategies for photogenerated holes. This review summarizes the hole modulation strategies developed in the last five years, including hole sacrificial agents, nanostructural modification, heterostructure construction and cocatalyst modification. Hole modulation dynamics studies, such as transient absorption spectroscopy, time-resolved photoluminescence spectroscopy, transient photovoltage and scanning electrochemical microscopy, are also summarized. Moreover, relevant conclusions and an outlook are proposed.\",\"PeriodicalId\":22044,\"journal\":{\"name\":\"Superlattices and Microstructures\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Superlattices and Microstructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.20517/microstructures.2022.23\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superlattices and Microstructures","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.20517/microstructures.2022.23","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 5

摘要

利用光电催化反应产生的清洁能源有望成为从根本上解决人类能源危机问题的绝佳选择。光电化学(PEC)电池结合了光催化和电催化的优点,可以有效地促进电荷分离,提高太阳能转换效率。然而,在PEC过程中空穴转移和随后的氧化反应较慢,导致光生电子-空穴对的快速重组,降低了PEC性能。光生空穴的半氧化反应是PEC水裂解的瓶颈。因此,空穴调制一直是催化领域的一个重要研究方向。然而,与电子调制相比,空穴调制的研究是有限的,仍然面临着很大的挑战。因此,开发有效的光生空穴调制策略具有重要意义。本文综述了近五年来发展起来的空穴调制策略,包括空穴牺牲剂、纳米结构修饰、异质结构构建和助催化剂修饰。综述了空穴调制动力学的研究,如瞬态吸收光谱、时间分辨光致发光光谱、瞬态光电压和扫描电化学显微镜。并提出了相关结论和展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modulation of photogenerated holes for enhanced photoelectrocatalytic performance
Utilizing clean energy derived from photoelectrocatalytic reactions is expected to be an excellent choice to fundamentally solve the problem of the human energy crisis. Photoelectrochemical (PEC) cell can effectively promote charge separation and improve solar energy conversion efficiency since it combines the advantages of photocatalysis and electrocatalysis. However, the hole transfer and subsequent oxidation reaction in the PEC process are slow, resulting in the rapid recombination of photogenerated electron-hole pairs and low PEC performance. The half-oxidation reaction involving photogenerated holes is the bottleneck of PEC water splitting. Therefore, hole modulation has been an important research area in the field of catalysis. However, compared with electron modulation, research on hole modulation is limited and still faces great challenges. It is therefore of great significance to develop effective modulation strategies for photogenerated holes. This review summarizes the hole modulation strategies developed in the last five years, including hole sacrificial agents, nanostructural modification, heterostructure construction and cocatalyst modification. Hole modulation dynamics studies, such as transient absorption spectroscopy, time-resolved photoluminescence spectroscopy, transient photovoltage and scanning electrochemical microscopy, are also summarized. Moreover, relevant conclusions and an outlook are proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Superlattices and Microstructures
Superlattices and Microstructures 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.20%
发文量
35
审稿时长
2.8 months
期刊介绍: Micro and Nanostructures is a journal disseminating the science and technology of micro-structures and nano-structures in materials and their devices, including individual and collective use of semiconductors, metals and insulators for the exploitation of their unique properties. The journal hosts papers dealing with fundamental and applied experimental research as well as theoretical studies. Fields of interest, including emerging ones, cover: • Novel micro and nanostructures • Nanomaterials (nanowires, nanodots, 2D materials ) and devices • Synthetic heterostructures • Plasmonics • Micro and nano-defects in materials (semiconductor, metal and insulators) • Surfaces and interfaces of thin films In addition to Research Papers, the journal aims at publishing Topical Reviews providing insights into rapidly evolving or more mature fields. Written by leading researchers in their respective fields, those articles are commissioned by the Editorial Board. Formerly known as Superlattices and Microstructures, with a 2021 IF of 3.22 and 2021 CiteScore of 5.4
期刊最新文献
Temperature dependence of dielectric nonlinearity of BaTiO3 ceramics Influence of hydrogel and porous scaffold on the magnetic thermal property and anticancer effect of Fe3O4 nanoparticles Magnetic structures and correlated physical properties in antiperovskites Cryogenic atom probe tomography and its applications: a review Scanning transmission electron microscopy for advanced characterization of ferroic materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1