B. Han, Xiaohui Ning, Q. Meng, Jin Yan, Chenchen Xie, R. Ding, Zuobin Wang
{"title":"由FAPbBr3-PVDF组成的高输出压电复合纳米发电机","authors":"B. Han, Xiaohui Ning, Q. Meng, Jin Yan, Chenchen Xie, R. Ding, Zuobin Wang","doi":"10.1109/3M-NANO.2017.8286321","DOIUrl":null,"url":null,"abstract":"The FAPbBrc perovskite nanoparticles are applied to mix in PVDF polymer for piezoelectric composite nanogenerators. The FAPbBn-PVDF based piezoelectric nanogenerators exhibit maximum piezoelectric outputs reaching over 29.5 V and 6.15 μA/cm2. The improved performance is attributed to the usage of PVDF polymer which working as the major matrix resulting in enhanced stress on the homogeneously distributed piezoelectric FAPbBn nanoparticles. Then the output piezoelectric signals were utilized to charge capacitances which can lighten purchased LEDs. The work demonstrates an effective approach to develop high-performance energy harvesters based on organometal trihalide perovskite materials.","PeriodicalId":6582,"journal":{"name":"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"14 1","pages":"371-374"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High output piezoelectric composite nanogenerators composed of FAPbBr3-PVDF\",\"authors\":\"B. Han, Xiaohui Ning, Q. Meng, Jin Yan, Chenchen Xie, R. Ding, Zuobin Wang\",\"doi\":\"10.1109/3M-NANO.2017.8286321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The FAPbBrc perovskite nanoparticles are applied to mix in PVDF polymer for piezoelectric composite nanogenerators. The FAPbBn-PVDF based piezoelectric nanogenerators exhibit maximum piezoelectric outputs reaching over 29.5 V and 6.15 μA/cm2. The improved performance is attributed to the usage of PVDF polymer which working as the major matrix resulting in enhanced stress on the homogeneously distributed piezoelectric FAPbBn nanoparticles. Then the output piezoelectric signals were utilized to charge capacitances which can lighten purchased LEDs. The work demonstrates an effective approach to develop high-performance energy harvesters based on organometal trihalide perovskite materials.\",\"PeriodicalId\":6582,\"journal\":{\"name\":\"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"volume\":\"14 1\",\"pages\":\"371-374\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3M-NANO.2017.8286321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2017.8286321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High output piezoelectric composite nanogenerators composed of FAPbBr3-PVDF
The FAPbBrc perovskite nanoparticles are applied to mix in PVDF polymer for piezoelectric composite nanogenerators. The FAPbBn-PVDF based piezoelectric nanogenerators exhibit maximum piezoelectric outputs reaching over 29.5 V and 6.15 μA/cm2. The improved performance is attributed to the usage of PVDF polymer which working as the major matrix resulting in enhanced stress on the homogeneously distributed piezoelectric FAPbBn nanoparticles. Then the output piezoelectric signals were utilized to charge capacitances which can lighten purchased LEDs. The work demonstrates an effective approach to develop high-performance energy harvesters based on organometal trihalide perovskite materials.