{"title":"在一个不公平的世界中衡量公平","authors":"J. Herington","doi":"10.1145/3375627.3375854","DOIUrl":null,"url":null,"abstract":"Computer scientists have made great strides in characterizing different measures of algorithmic fairness, and showing that certain measures of fairness cannot be jointly satisfied. In this paper, I argue that the three most popular families of measures - unconditional independence, target-conditional independence and classification-conditional independence - make assumptions that are unsustainable in the context of an unjust world. I begin by introducing the measures and the implicit idealizations they make about the underlying causal structure of the contexts in which they are deployed. I then discuss how these idealizations fall apart in the context of historical injustice, ongoing unmodeled oppression, and the permissibility of using sensitive attributes to rectify injustice. In the final section, I suggest an alternative framework for measuring fairness in the context of existing injustice: distributive fairness.","PeriodicalId":93612,"journal":{"name":"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Measuring Fairness in an Unfair World\",\"authors\":\"J. Herington\",\"doi\":\"10.1145/3375627.3375854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer scientists have made great strides in characterizing different measures of algorithmic fairness, and showing that certain measures of fairness cannot be jointly satisfied. In this paper, I argue that the three most popular families of measures - unconditional independence, target-conditional independence and classification-conditional independence - make assumptions that are unsustainable in the context of an unjust world. I begin by introducing the measures and the implicit idealizations they make about the underlying causal structure of the contexts in which they are deployed. I then discuss how these idealizations fall apart in the context of historical injustice, ongoing unmodeled oppression, and the permissibility of using sensitive attributes to rectify injustice. In the final section, I suggest an alternative framework for measuring fairness in the context of existing injustice: distributive fairness.\",\"PeriodicalId\":93612,\"journal\":{\"name\":\"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3375627.3375854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375627.3375854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computer scientists have made great strides in characterizing different measures of algorithmic fairness, and showing that certain measures of fairness cannot be jointly satisfied. In this paper, I argue that the three most popular families of measures - unconditional independence, target-conditional independence and classification-conditional independence - make assumptions that are unsustainable in the context of an unjust world. I begin by introducing the measures and the implicit idealizations they make about the underlying causal structure of the contexts in which they are deployed. I then discuss how these idealizations fall apart in the context of historical injustice, ongoing unmodeled oppression, and the permissibility of using sensitive attributes to rectify injustice. In the final section, I suggest an alternative framework for measuring fairness in the context of existing injustice: distributive fairness.