半结晶聚合物拉伸模量预测模型的鲁棒性研究

IF 1.4 4区 工程技术 Q3 ENGINEERING, CHEMICAL Periodica Polytechnica Chemical Engineering Pub Date : 2023-03-16 DOI:10.3311/ppch.20991
Ali Zarbali, Balázs Pinke, A. Menyhárd
{"title":"半结晶聚合物拉伸模量预测模型的鲁棒性研究","authors":"Ali Zarbali, Balázs Pinke, A. Menyhárd","doi":"10.3311/ppch.20991","DOIUrl":null,"url":null,"abstract":"This work presents a robustness study of a previously developed empirical model that links Young's modulus to two key parameters of crystalline structure; crystallinity and lamellae thickness. The reliability of this modulus prediction model was tested by using different calorimeters and different polypropylene grades as well. Small samples were fabricated from injection-molded bars from different locations of the specimens in order to check the effect of structural inhomogeneity originated by the dynamic processing conditions. In addition, the standard deviation and consequently the accuracy of the prediction was tested by repeated calorimetric measurements. The crystalline structure and melting characteristics were measured by differential scanning calorimetry (DSC). The tensile properties of studied specimens were evaluated by standardized tensile tests. Although, the accuracy and reliability of the prediction model is dependent on the instrument used for thermal analysis, reasonably good agreement was found between the predicted and measured values in most cases. However, we may note that only well-calibrated calorimeters are suitable for reliable prediction of the modulus.","PeriodicalId":19922,"journal":{"name":"Periodica Polytechnica Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robustness Study of a Tensile Modulus Prediction Model for Semicrystalline Polymers\",\"authors\":\"Ali Zarbali, Balázs Pinke, A. Menyhárd\",\"doi\":\"10.3311/ppch.20991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a robustness study of a previously developed empirical model that links Young's modulus to two key parameters of crystalline structure; crystallinity and lamellae thickness. The reliability of this modulus prediction model was tested by using different calorimeters and different polypropylene grades as well. Small samples were fabricated from injection-molded bars from different locations of the specimens in order to check the effect of structural inhomogeneity originated by the dynamic processing conditions. In addition, the standard deviation and consequently the accuracy of the prediction was tested by repeated calorimetric measurements. The crystalline structure and melting characteristics were measured by differential scanning calorimetry (DSC). The tensile properties of studied specimens were evaluated by standardized tensile tests. Although, the accuracy and reliability of the prediction model is dependent on the instrument used for thermal analysis, reasonably good agreement was found between the predicted and measured values in most cases. However, we may note that only well-calibrated calorimeters are suitable for reliable prediction of the modulus.\",\"PeriodicalId\":19922,\"journal\":{\"name\":\"Periodica Polytechnica Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Polytechnica Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3311/ppch.20991\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppch.20991","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

这项工作提出了先前开发的经验模型的鲁棒性研究,该模型将杨氏模量与晶体结构的两个关键参数联系起来;结晶度和薄片厚度。用不同的量热仪和不同的聚丙烯牌号测试了该模量预测模型的可靠性。为了验证动态加工条件对结构不均匀性的影响,在试件不同位置的注射成型棒材上制备了小试样。此外,通过重复量热测量来测试标准偏差和预测的准确性。用差示扫描量热法(DSC)测定了晶体结构和熔融特性。通过标准化拉伸试验评估了所研究试件的拉伸性能。虽然预测模型的准确性和可靠性取决于用于热分析的仪器,但在大多数情况下,预测值和实测值之间的一致性相当好。然而,我们可能会注意到,只有校准良好的量热计适合于模量的可靠预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robustness Study of a Tensile Modulus Prediction Model for Semicrystalline Polymers
This work presents a robustness study of a previously developed empirical model that links Young's modulus to two key parameters of crystalline structure; crystallinity and lamellae thickness. The reliability of this modulus prediction model was tested by using different calorimeters and different polypropylene grades as well. Small samples were fabricated from injection-molded bars from different locations of the specimens in order to check the effect of structural inhomogeneity originated by the dynamic processing conditions. In addition, the standard deviation and consequently the accuracy of the prediction was tested by repeated calorimetric measurements. The crystalline structure and melting characteristics were measured by differential scanning calorimetry (DSC). The tensile properties of studied specimens were evaluated by standardized tensile tests. Although, the accuracy and reliability of the prediction model is dependent on the instrument used for thermal analysis, reasonably good agreement was found between the predicted and measured values in most cases. However, we may note that only well-calibrated calorimeters are suitable for reliable prediction of the modulus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
7.70%
发文量
44
审稿时长
>12 weeks
期刊介绍: The main scope of the journal is to publish original research articles in the wide field of chemical engineering including environmental and bioengineering.
期刊最新文献
The Nanostructure Based SnS Chalcogenide Semiconductor: A Detailed Investigation of Physical and Electrical Properties Study and Optimization of a New Perovskite Solar Cell Structure Based on the Two Absorber Materials Cs2TiBr6 and MASnBr3 Using SCAPS 1D Metal Oxide-based Nanoparticles for Environmental Remediation: Drawbacks and Opportunities Effect of Nanophotocatalyst WO3 Addition on PVDF Membrane Characteristics and Performance Mathematical-model Analysis of the Potential Exposure to Lead, Zinc and Iron Emissions from Consumption of Premium Motor Spirit in Nigeria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1