基于gpr的半刚性地基下注浆孔洞检测及评价

Jiaqi Zheng
{"title":"基于gpr的半刚性地基下注浆孔洞检测及评价","authors":"Jiaqi Zheng","doi":"10.31237/osf.io/ry58a","DOIUrl":null,"url":null,"abstract":"The void underneath semi-rigid base is a common defect in roads. There are some difficulties in the detection and repair for this kind of hidden damage, as well as in the evaluation of the effects of grouting treatment. For the detection and maintenance of roads, it is essential to study the detection and judging for voids underneath base and the evaluation of the spread of grout. Through theoretical analysis, numerical simulation and analysis of real data, this research generated the characteristics of under-base voids of different types and dimensions on GPR images, proposed the detecting and dimension-measuring methods for under-base voids, and studied the process and effects of data analysis techniques. (1) The characteristics of under-base voids of different types (air-filled, water-filled or grout-treated) and dimensions (height and horizontal dimensions), on A-scan and B-scan GPR image respectively, were analyzed theoretically. The gprMax software which is based on the FDTD method was employed to simulate the transmission of GPR wave within the road structure, which certified the conclusion of theoretical analysis of the image characteristics of voids. In addition, the influence of antenna frequency on the detection for voids are also analyzed.(2) Approaches for detecting voids and for estimating its height were studied, focusing on voids with a height ranging from 0.01m to 0.3m. The Least Squares Method of System Identification and the Tikhonov Regularized Deconvolution were both successfully applied to the detection and dimension estimation of air-filled voids, and their application conditions were discussed. As for water-filled and grout-treated voids, the reflection-amplitude-based dielectric constant method was used for void detection.(3) The approach for estimating the horizontal dimension of voids was studied, focusing on voids with a length ranging from 0.04m to 0.52m. According to the simulating results of air-filled voids, the estimation index was selected, and the linear calculation formula for length of voids was generated by regression analysis. (4) The data processing process was discussed. Also, the effects of different data processing techniques were studied in terms of noise filtering and attenuation compensation, and their influence on the image characteristics was also discussed.","PeriodicalId":8487,"journal":{"name":"arXiv: Signal Processing","volume":"166 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GPR-based Detection of Voids and Evaluation of Grouting Under Semi-rigid Basement\",\"authors\":\"Jiaqi Zheng\",\"doi\":\"10.31237/osf.io/ry58a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The void underneath semi-rigid base is a common defect in roads. There are some difficulties in the detection and repair for this kind of hidden damage, as well as in the evaluation of the effects of grouting treatment. For the detection and maintenance of roads, it is essential to study the detection and judging for voids underneath base and the evaluation of the spread of grout. Through theoretical analysis, numerical simulation and analysis of real data, this research generated the characteristics of under-base voids of different types and dimensions on GPR images, proposed the detecting and dimension-measuring methods for under-base voids, and studied the process and effects of data analysis techniques. (1) The characteristics of under-base voids of different types (air-filled, water-filled or grout-treated) and dimensions (height and horizontal dimensions), on A-scan and B-scan GPR image respectively, were analyzed theoretically. The gprMax software which is based on the FDTD method was employed to simulate the transmission of GPR wave within the road structure, which certified the conclusion of theoretical analysis of the image characteristics of voids. In addition, the influence of antenna frequency on the detection for voids are also analyzed.(2) Approaches for detecting voids and for estimating its height were studied, focusing on voids with a height ranging from 0.01m to 0.3m. The Least Squares Method of System Identification and the Tikhonov Regularized Deconvolution were both successfully applied to the detection and dimension estimation of air-filled voids, and their application conditions were discussed. As for water-filled and grout-treated voids, the reflection-amplitude-based dielectric constant method was used for void detection.(3) The approach for estimating the horizontal dimension of voids was studied, focusing on voids with a length ranging from 0.04m to 0.52m. According to the simulating results of air-filled voids, the estimation index was selected, and the linear calculation formula for length of voids was generated by regression analysis. (4) The data processing process was discussed. Also, the effects of different data processing techniques were studied in terms of noise filtering and attenuation compensation, and their influence on the image characteristics was also discussed.\",\"PeriodicalId\":8487,\"journal\":{\"name\":\"arXiv: Signal Processing\",\"volume\":\"166 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31237/osf.io/ry58a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31237/osf.io/ry58a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

半刚性基础下的空洞是道路施工中常见的缺陷。这类隐蔽性损伤的检测和修复以及注浆处理效果的评价都存在一定的困难。在道路检测与养护中,研究基层下空穴的检测与判断以及浆液扩散的评价是十分必要的。本研究通过理论分析、数值模拟和实际数据分析,在探地雷达图像上生成了不同类型、不同尺寸的基底下空洞特征,提出了基底下空洞的探测和尺寸测量方法,研究了数据分析技术的过程和效果。(1)从理论上分析了a扫描和b扫描探地雷达图像上不同类型(充气、充水和灌浆)和尺寸(高度和水平尺寸)的基底下空洞特征。利用基于时域有限差分法的gprMax软件模拟了探地雷达波在道路结构内的传输,验证了孔洞图像特性理论分析的结论。(2)研究了空洞的检测方法和空洞高度的估计方法,重点研究了高度在0.01m ~ 0.3m之间的空洞。将系统辨识的最小二乘法和Tikhonov正则化反卷积成功地应用于充气空洞的检测和维数估计,并讨论了它们的应用条件。对于充水和灌浆处理过的孔洞,采用基于反射振幅的介电常数法进行孔洞探测。(3)研究了孔洞水平尺寸的估算方法,重点研究了长度为0.04m ~ 0.52m的孔洞。根据充气孔洞的模拟结果,选择估算指标,通过回归分析得到孔洞长度的线性计算公式。(4)讨论了数据处理过程。同时,从噪声滤波和衰减补偿两方面研究了不同数据处理技术对图像特性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GPR-based Detection of Voids and Evaluation of Grouting Under Semi-rigid Basement
The void underneath semi-rigid base is a common defect in roads. There are some difficulties in the detection and repair for this kind of hidden damage, as well as in the evaluation of the effects of grouting treatment. For the detection and maintenance of roads, it is essential to study the detection and judging for voids underneath base and the evaluation of the spread of grout. Through theoretical analysis, numerical simulation and analysis of real data, this research generated the characteristics of under-base voids of different types and dimensions on GPR images, proposed the detecting and dimension-measuring methods for under-base voids, and studied the process and effects of data analysis techniques. (1) The characteristics of under-base voids of different types (air-filled, water-filled or grout-treated) and dimensions (height and horizontal dimensions), on A-scan and B-scan GPR image respectively, were analyzed theoretically. The gprMax software which is based on the FDTD method was employed to simulate the transmission of GPR wave within the road structure, which certified the conclusion of theoretical analysis of the image characteristics of voids. In addition, the influence of antenna frequency on the detection for voids are also analyzed.(2) Approaches for detecting voids and for estimating its height were studied, focusing on voids with a height ranging from 0.01m to 0.3m. The Least Squares Method of System Identification and the Tikhonov Regularized Deconvolution were both successfully applied to the detection and dimension estimation of air-filled voids, and their application conditions were discussed. As for water-filled and grout-treated voids, the reflection-amplitude-based dielectric constant method was used for void detection.(3) The approach for estimating the horizontal dimension of voids was studied, focusing on voids with a length ranging from 0.04m to 0.52m. According to the simulating results of air-filled voids, the estimation index was selected, and the linear calculation formula for length of voids was generated by regression analysis. (4) The data processing process was discussed. Also, the effects of different data processing techniques were studied in terms of noise filtering and attenuation compensation, and their influence on the image characteristics was also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Three-Dimensional Localization of Active Aerial Targets Using a Single Terrestrial Receiver Site Feasibility Study on Intra-Grid Location Estimation Using Power ENF Signals Photonic perceptron at Giga-OP/s speeds with Kerr microcombs for scalable optical neural networks Nonlinear methods to quantify Movement Variability in Human-Humanoid Interaction Activities Design, Implementation, Comparison, and Performance analysis between Analog Butterworth and Chebyshev-I Low Pass Filter Using Approximation, Python and Proteus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1