{"title":"原子力显微镜检测单个淋巴瘤细胞的微纳物理性质","authors":"B. Liu, Mi Li, Bo Wang, Lianqing Liu, Fanan Wei","doi":"10.1109/3M-NANO.2017.8286290","DOIUrl":null,"url":null,"abstract":"Non-Hodgkin's lymphoma (NHL) is the most common adult hematological cancer. With the advent of combination therapy of chemotherapy and the monoclonal anti-CD20 antibody Rituximab, the substantial advancement in the treatment of B-cell malignancies has been achieved. In the clinical treatment of NHL, however, there are still many patients who are not sensitive to the therapy of rituximab. Hence investigating the interactions between rituximab and lymphoma cells is crucial for us to understand the actions of rituximab and design drugs with better efficacies. Traditional biochemical methods for cell detection require the various pretreatments of the cell, destroying the structures of cells. This paper uses atomic force microscopy (AFM) to label-free characterize the micro/nano physical properties of single lymphoma cells, including cell morphology, cell elasticity, and molecular interactions on the cell surface. The study improved our understanding of the rituximab actions.","PeriodicalId":6582,"journal":{"name":"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"38 1","pages":"250-253"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting the micro/nano physical properties of single lymphoma cells with atomic force microscopy\",\"authors\":\"B. Liu, Mi Li, Bo Wang, Lianqing Liu, Fanan Wei\",\"doi\":\"10.1109/3M-NANO.2017.8286290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-Hodgkin's lymphoma (NHL) is the most common adult hematological cancer. With the advent of combination therapy of chemotherapy and the monoclonal anti-CD20 antibody Rituximab, the substantial advancement in the treatment of B-cell malignancies has been achieved. In the clinical treatment of NHL, however, there are still many patients who are not sensitive to the therapy of rituximab. Hence investigating the interactions between rituximab and lymphoma cells is crucial for us to understand the actions of rituximab and design drugs with better efficacies. Traditional biochemical methods for cell detection require the various pretreatments of the cell, destroying the structures of cells. This paper uses atomic force microscopy (AFM) to label-free characterize the micro/nano physical properties of single lymphoma cells, including cell morphology, cell elasticity, and molecular interactions on the cell surface. The study improved our understanding of the rituximab actions.\",\"PeriodicalId\":6582,\"journal\":{\"name\":\"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"volume\":\"38 1\",\"pages\":\"250-253\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3M-NANO.2017.8286290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2017.8286290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detecting the micro/nano physical properties of single lymphoma cells with atomic force microscopy
Non-Hodgkin's lymphoma (NHL) is the most common adult hematological cancer. With the advent of combination therapy of chemotherapy and the monoclonal anti-CD20 antibody Rituximab, the substantial advancement in the treatment of B-cell malignancies has been achieved. In the clinical treatment of NHL, however, there are still many patients who are not sensitive to the therapy of rituximab. Hence investigating the interactions between rituximab and lymphoma cells is crucial for us to understand the actions of rituximab and design drugs with better efficacies. Traditional biochemical methods for cell detection require the various pretreatments of the cell, destroying the structures of cells. This paper uses atomic force microscopy (AFM) to label-free characterize the micro/nano physical properties of single lymphoma cells, including cell morphology, cell elasticity, and molecular interactions on the cell surface. The study improved our understanding of the rituximab actions.