在傅里叶变换和线性代数操作中改进数据局部性的系统方法

Doru-Thom Popovici, A. Canning, Zhengji Zhao, Lin-wang Wang, J. Shalf
{"title":"在傅里叶变换和线性代数操作中改进数据局部性的系统方法","authors":"Doru-Thom Popovici, A. Canning, Zhengji Zhao, Lin-wang Wang, J. Shalf","doi":"10.1145/3447818.3460354","DOIUrl":null,"url":null,"abstract":"The performance of most scientific applications depends on efficient mathematical libraries. For example, scientific applications like the plane wave based Density Functional Theory approach for electronic structure calculations uses highly optimized libraries for Fourier transforms, dense linear algebra (orthogonalization) and sparse linear algebra (non-local projectors in real space). Although vendor-tuned libraries offer efficient implementations for each standalone mathematical kernel, the partitioning of those calls into sequentially invoked kernels inhibits cross-kernel optimizations that could improve data locality across memory bound operations. In this work we show that, by expressing these kernels as an operation on high dimensional tensors, cross-kernel dataflow optimizations that span FFT, dense and sparse linear algebra, can be readily exposed and exploited. We outline a systematic way of merging the Fourier transforms with the linear algebra computations, improving data locality and reducing data movement to main memory. We show that compared to conventional implementations, this streaming/dataflow approach offers 2x speedup on GPUs and 8x/12x speedup on CPUs compared to a baseline code that uses vendor-optimized libraries. Although we use Density Functional Theory to demonstrate the value of our approach, our methodology is broadly applicable to other applications that use Fourier transforms and linear algebra operations as building blocks.","PeriodicalId":73273,"journal":{"name":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A systematic approach to improving data locality across Fourier transforms and linear algebra operations\",\"authors\":\"Doru-Thom Popovici, A. Canning, Zhengji Zhao, Lin-wang Wang, J. Shalf\",\"doi\":\"10.1145/3447818.3460354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of most scientific applications depends on efficient mathematical libraries. For example, scientific applications like the plane wave based Density Functional Theory approach for electronic structure calculations uses highly optimized libraries for Fourier transforms, dense linear algebra (orthogonalization) and sparse linear algebra (non-local projectors in real space). Although vendor-tuned libraries offer efficient implementations for each standalone mathematical kernel, the partitioning of those calls into sequentially invoked kernels inhibits cross-kernel optimizations that could improve data locality across memory bound operations. In this work we show that, by expressing these kernels as an operation on high dimensional tensors, cross-kernel dataflow optimizations that span FFT, dense and sparse linear algebra, can be readily exposed and exploited. We outline a systematic way of merging the Fourier transforms with the linear algebra computations, improving data locality and reducing data movement to main memory. We show that compared to conventional implementations, this streaming/dataflow approach offers 2x speedup on GPUs and 8x/12x speedup on CPUs compared to a baseline code that uses vendor-optimized libraries. Although we use Density Functional Theory to demonstrate the value of our approach, our methodology is broadly applicable to other applications that use Fourier transforms and linear algebra operations as building blocks.\",\"PeriodicalId\":73273,\"journal\":{\"name\":\"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3447818.3460354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447818.3460354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

大多数科学应用程序的性能依赖于高效的数学库。例如,用于电子结构计算的基于平面波的密度泛函理论方法等科学应用使用高度优化的傅立叶变换、密集线性代数(正交化)和稀疏线性代数(实空间中的非局部投影)库。尽管供应商调优的库为每个独立的数学内核提供了高效的实现,但是将这些调用划分为顺序调用的内核抑制了跨内核优化,而跨内存绑定操作可以提高数据局部性。在这项工作中,我们表明,通过将这些核表示为对高维张量的操作,跨FFT、密集和稀疏线性代数的跨核数据流优化可以很容易地暴露和利用。我们提出了一种将傅里叶变换与线性代数计算相结合的系统方法,提高了数据的局域性,减少了数据向主存的移动。我们展示了与传统实现相比,与使用供应商优化库的基准代码相比,这种流/数据流方法在gpu上提供了2倍的加速,在cpu上提供了8倍/12倍的加速。虽然我们使用密度泛函理论来证明我们方法的价值,但我们的方法广泛适用于使用傅里叶变换和线性代数运算作为构建块的其他应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A systematic approach to improving data locality across Fourier transforms and linear algebra operations
The performance of most scientific applications depends on efficient mathematical libraries. For example, scientific applications like the plane wave based Density Functional Theory approach for electronic structure calculations uses highly optimized libraries for Fourier transforms, dense linear algebra (orthogonalization) and sparse linear algebra (non-local projectors in real space). Although vendor-tuned libraries offer efficient implementations for each standalone mathematical kernel, the partitioning of those calls into sequentially invoked kernels inhibits cross-kernel optimizations that could improve data locality across memory bound operations. In this work we show that, by expressing these kernels as an operation on high dimensional tensors, cross-kernel dataflow optimizations that span FFT, dense and sparse linear algebra, can be readily exposed and exploited. We outline a systematic way of merging the Fourier transforms with the linear algebra computations, improving data locality and reducing data movement to main memory. We show that compared to conventional implementations, this streaming/dataflow approach offers 2x speedup on GPUs and 8x/12x speedup on CPUs compared to a baseline code that uses vendor-optimized libraries. Although we use Density Functional Theory to demonstrate the value of our approach, our methodology is broadly applicable to other applications that use Fourier transforms and linear algebra operations as building blocks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accelerating BWA-MEM Read Mapping on GPUs. Dynamic Memory Management in Massively Parallel Systems: A Case on GPUs. Priority Algorithms with Advice for Disjoint Path Allocation Problems From Data of Internet of Things to Domain Knowledge: A Case Study of Exploration in Smart Agriculture On Two Variants of Induced Matchings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1