大型多媒体数据库中联合复杂查询的高效执行

Karina Fasolin, Renato Fileto, Marcelo Krüger, D. S. Kaster, Mônica Ribeiro Porto Ferreira, R. Cordeiro, A. Traina, C. Traina
{"title":"大型多媒体数据库中联合复杂查询的高效执行","authors":"Karina Fasolin, Renato Fileto, Marcelo Krüger, D. S. Kaster, Mônica Ribeiro Porto Ferreira, R. Cordeiro, A. Traina, C. Traina","doi":"10.1109/ISM.2013.112","DOIUrl":null,"url":null,"abstract":"This paper proposes an approach to efficiently execute conjunctive queries on big complex data together with their related conventional data. The basic idea is to horizontally fragment the database according to criteria frequently used in query predicates. The collection of fragments is indexed to efficiently find the fragment(s) whose contents satisfy some query predicate(s). The contents of each fragment are then indexed as well, to support efficient filtering of the fragment data according to other query predicate(s) conjunctively connected to the former. This strategy has been applied to a collection of more than 106 million images together with their related conventional data. Experimental results show considerable performance gain of the proposed approach for queries with conventional and similarity-based predicates, compared to the use of a unique metric index for the entire database contents.","PeriodicalId":6311,"journal":{"name":"2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)","volume":"1 1","pages":"536-543"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Efficient Execution of Conjunctive Complex Queries on Big Multimedia Databases\",\"authors\":\"Karina Fasolin, Renato Fileto, Marcelo Krüger, D. S. Kaster, Mônica Ribeiro Porto Ferreira, R. Cordeiro, A. Traina, C. Traina\",\"doi\":\"10.1109/ISM.2013.112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an approach to efficiently execute conjunctive queries on big complex data together with their related conventional data. The basic idea is to horizontally fragment the database according to criteria frequently used in query predicates. The collection of fragments is indexed to efficiently find the fragment(s) whose contents satisfy some query predicate(s). The contents of each fragment are then indexed as well, to support efficient filtering of the fragment data according to other query predicate(s) conjunctively connected to the former. This strategy has been applied to a collection of more than 106 million images together with their related conventional data. Experimental results show considerable performance gain of the proposed approach for queries with conventional and similarity-based predicates, compared to the use of a unique metric index for the entire database contents.\",\"PeriodicalId\":6311,\"journal\":{\"name\":\"2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)\",\"volume\":\"1 1\",\"pages\":\"536-543\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2013.112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2013.112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一种对大型复杂数据及其相关常规数据高效执行联合查询的方法。基本思想是根据查询谓词中经常使用的标准水平分割数据库。对片段集合进行索引,以便有效地找到其内容满足某些查询谓词的片段。然后对每个片段的内容也进行索引,以支持根据连接到片段的其他查询谓词对片段数据进行有效过滤。该策略已应用于超过1.06亿张图像及其相关常规数据的集合。实验结果表明,与对整个数据库内容使用唯一的度量索引相比,对于使用传统谓词和基于相似性的谓词的查询,所提出的方法获得了相当大的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Execution of Conjunctive Complex Queries on Big Multimedia Databases
This paper proposes an approach to efficiently execute conjunctive queries on big complex data together with their related conventional data. The basic idea is to horizontally fragment the database according to criteria frequently used in query predicates. The collection of fragments is indexed to efficiently find the fragment(s) whose contents satisfy some query predicate(s). The contents of each fragment are then indexed as well, to support efficient filtering of the fragment data according to other query predicate(s) conjunctively connected to the former. This strategy has been applied to a collection of more than 106 million images together with their related conventional data. Experimental results show considerable performance gain of the proposed approach for queries with conventional and similarity-based predicates, compared to the use of a unique metric index for the entire database contents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The LectureSight System in Production Scenarios and Its Impact on Learning from Video Recorded Lectures Similarity-Based Browsing of Image Search Results Efficient Super Resolution Using Edge Directed Unsharp Masking Sharpening Method A Fluorescent Mid-air Screen Towards Sketch-Based Motion Queries in Sports Videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1