利用神经网络通过阈值组合增强图像二值化

Giorgiana Violeta Vlasceanu, N. Tarbă
{"title":"利用神经网络通过阈值组合增强图像二值化","authors":"Giorgiana Violeta Vlasceanu, N. Tarbă","doi":"10.18662/brain/14.2/444","DOIUrl":null,"url":null,"abstract":"Threshold-based methods are prevalent across numerous domains, with specific relevance to image binarization, which traditionally employs global and local threshold algorithms. This paper presents a novel approach to image binarization, where the capacity of neural networks is utilized not just for determining optimal thresholds, but also for combining multiple global thresholds sourced from existing binarization techniques. The primary objective of our method is to develop a robust binarization strategy capable of managing a wide array of image conditions. By integrating the strengths of various thresholding techniques, our approach aims to establish a significant connection between traditional thresholding methods and those underpinned by deep learning.","PeriodicalId":44081,"journal":{"name":"BRAIN-Broad Research in Artificial Intelligence and Neuroscience","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing Neural Networks for Enhancing Image Binarization Through Threshold Combination\",\"authors\":\"Giorgiana Violeta Vlasceanu, N. Tarbă\",\"doi\":\"10.18662/brain/14.2/444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Threshold-based methods are prevalent across numerous domains, with specific relevance to image binarization, which traditionally employs global and local threshold algorithms. This paper presents a novel approach to image binarization, where the capacity of neural networks is utilized not just for determining optimal thresholds, but also for combining multiple global thresholds sourced from existing binarization techniques. The primary objective of our method is to develop a robust binarization strategy capable of managing a wide array of image conditions. By integrating the strengths of various thresholding techniques, our approach aims to establish a significant connection between traditional thresholding methods and those underpinned by deep learning.\",\"PeriodicalId\":44081,\"journal\":{\"name\":\"BRAIN-Broad Research in Artificial Intelligence and Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BRAIN-Broad Research in Artificial Intelligence and Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18662/brain/14.2/444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BRAIN-Broad Research in Artificial Intelligence and Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18662/brain/14.2/444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

基于阈值的方法在许多领域都很普遍,与图像二值化特别相关,传统上使用全局和局部阈值算法。本文提出了一种新的图像二值化方法,其中神经网络的能力不仅用于确定最佳阈值,而且用于组合来自现有二值化技术的多个全局阈值。我们方法的主要目标是开发一种鲁棒的二值化策略,能够管理各种图像条件。通过整合各种阈值技术的优势,我们的方法旨在建立传统阈值方法与深度学习支持的阈值方法之间的重要联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Harnessing Neural Networks for Enhancing Image Binarization Through Threshold Combination
Threshold-based methods are prevalent across numerous domains, with specific relevance to image binarization, which traditionally employs global and local threshold algorithms. This paper presents a novel approach to image binarization, where the capacity of neural networks is utilized not just for determining optimal thresholds, but also for combining multiple global thresholds sourced from existing binarization techniques. The primary objective of our method is to develop a robust binarization strategy capable of managing a wide array of image conditions. By integrating the strengths of various thresholding techniques, our approach aims to establish a significant connection between traditional thresholding methods and those underpinned by deep learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
47.80%
发文量
0
审稿时长
2 weeks
期刊最新文献
Psychological Complications During Military Operations in Ukraine: Neurobiological Effects Results of the Implementation of a Comprehensive Socio-Psychological Program to Foster Professional Empathy Among Professionals in the Helping Professions Can Neural Networks Enhance Physics Simulations? National Strategy of Information Society in the Realities of Ukraine Document Image Binarization Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1