{"title":"传感器和执行器用电陶瓷","authors":"C. Prakash","doi":"10.1109/ISPTS.2012.6260919","DOIUrl":null,"url":null,"abstract":"Electroceramics is a class of very important and versatile ceramic materials whose electrical properties are exploited to make devices for a number of advanced applications for civil and military use. These materials include: ferrites, ferroelectrics, piezoelectrics, pyroelectrics, microwave dielectrics etc. Their physical and chemical properties are sensitive to a change in the environment such as temperature, pressure, electric field, magnetic field etc. They form essential component of any smart system. Most of the practical applications are based on bulk ceramics. A material can be tailored by suitable substitutions to get desired characteristics to meet specific requirements. Though the material properties are predominantly governed by composition, processing methodology plays an important role to control material performance and thus optimization of processing parameters become very crucial. Here development of microwave ferrites and dielectrics for phase shifters, prizoelectrics for actuator applications and pyroelectrics for IR detectors are described. Some of the novel material processing techniques shall also be presented.","PeriodicalId":6431,"journal":{"name":"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electroceramics for sensors and actuators\",\"authors\":\"C. Prakash\",\"doi\":\"10.1109/ISPTS.2012.6260919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electroceramics is a class of very important and versatile ceramic materials whose electrical properties are exploited to make devices for a number of advanced applications for civil and military use. These materials include: ferrites, ferroelectrics, piezoelectrics, pyroelectrics, microwave dielectrics etc. Their physical and chemical properties are sensitive to a change in the environment such as temperature, pressure, electric field, magnetic field etc. They form essential component of any smart system. Most of the practical applications are based on bulk ceramics. A material can be tailored by suitable substitutions to get desired characteristics to meet specific requirements. Though the material properties are predominantly governed by composition, processing methodology plays an important role to control material performance and thus optimization of processing parameters become very crucial. Here development of microwave ferrites and dielectrics for phase shifters, prizoelectrics for actuator applications and pyroelectrics for IR detectors are described. Some of the novel material processing techniques shall also be presented.\",\"PeriodicalId\":6431,\"journal\":{\"name\":\"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPTS.2012.6260919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPTS.2012.6260919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电陶瓷是一类非常重要且用途广泛的陶瓷材料,其电性能可用于制造用于民用和军用的许多先进应用的器件。这些材料包括:铁氧体、铁电体、压电体、热释电体、微波介电体等。它们的物理和化学性质对温度、压力、电场、磁场等环境的变化很敏感。它们构成了任何智能系统的基本组成部分。大多数实际应用都是基于块状陶瓷。材料可以通过适当的替代来定制,以获得所需的特性,以满足特定的要求。虽然材料的性能主要由成分决定,但加工方法对材料的性能起着重要的控制作用,因此加工参数的优化变得至关重要。本文介绍了用于移相器的微波铁氧体和介电体、用于执行器的压电体和用于红外探测器的热释电体的发展。一些新的材料加工技术也将被提出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electroceramics for sensors and actuators
Electroceramics is a class of very important and versatile ceramic materials whose electrical properties are exploited to make devices for a number of advanced applications for civil and military use. These materials include: ferrites, ferroelectrics, piezoelectrics, pyroelectrics, microwave dielectrics etc. Their physical and chemical properties are sensitive to a change in the environment such as temperature, pressure, electric field, magnetic field etc. They form essential component of any smart system. Most of the practical applications are based on bulk ceramics. A material can be tailored by suitable substitutions to get desired characteristics to meet specific requirements. Though the material properties are predominantly governed by composition, processing methodology plays an important role to control material performance and thus optimization of processing parameters become very crucial. Here development of microwave ferrites and dielectrics for phase shifters, prizoelectrics for actuator applications and pyroelectrics for IR detectors are described. Some of the novel material processing techniques shall also be presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gas sensing properties of the fluorine-doped tin oxide thin films Prepared by advanced spray pyrolysis Tailoring of optical band gap, morphology and surface wettability of bath deposited nanocrystalline ZnxCd(1−x)S thin films with incorporation of Zn for solar cell application Comparison of micro fabricated C and S bend shape SU-8 polymer waveguide of different bending diameters for maximum sensitivity A theoretical approach to study the temperature dependent performance of a SiC MESFET in sensor application. Effect of RE3+ (RE = Eu, Sm) ion doping on dielectric properties of nano-wollastonite synthesized by combustion method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1