R. Pillai, V. Triantopoulos, A. Berahas, Matthew J. Brusstar, Ruonan Sun, Tim A. Nevius, A. Boehman
{"title":"使用深度学习建模和预测重型汽车发动机输出和排气管氮氧化物(NOx)排放","authors":"R. Pillai, V. Triantopoulos, A. Berahas, Matthew J. Brusstar, Ruonan Sun, Tim A. Nevius, A. Boehman","doi":"10.3389/fmech.2022.840310","DOIUrl":null,"url":null,"abstract":"As emissions regulations for transportation become stricter, it is increasingly important to develop accurate nitrogen oxide (NO x ) emissions models for heavy-duty vehicles. However, estimation of transient NO x emissions using physics-based models is challenging due to its highly dynamic nature, which arises from the complex interactions between power demand, engine operation, and exhaust aftertreatment efficiency. As an alternative to physics-based models, a multi-dimensional data-driven approach is proposed as a framework to estimate NO x emissions across an extensive set of representative engine and exhaust aftertreatment system operating conditions. This paper employs Deep Neural Networks (DNN) to develop two models, an engine-out NO x and a tailpipe NO x model, to predict heavy-duty vehicle NO x emissions. The DNN models were developed using variables that are available from On-board Diagnostics from two datasets, an engine dynamometer and a chassis dynamometer dataset. Results from trained DNN models using the engine dynamometer dataset showed that the proposed approach can predict NO x emissions with high accuracy, where R 2 scores are higher than 0.99 for both engine-out and tailpipe NO x models on cold/hot Federal Test Procedure (FTP) and Ramped Mode Cycle (RMC) data. Similarly, the engine-out and tailpipe NO x models using the chassis dynamometer dataset achieved R 2 scores of 0.97 and 0.93, respectively. All models developed in this study have a mean absolute error percentage of approximately 1% relative to maximum NO x in the datasets, which is comparable to that of physical NO x emissions measurement analyzers. The input feature importance studies conducted in this work indicate that high accuracy DNN models (R 2 = 0.92–0.95) could be developed by utilizing minimal significant engine and aftertreatment inputs. This study also demonstrates that DNN NO x emissions models can be very effective tools for fault detection in Selective Catalytic Reduction (SCR) systems.","PeriodicalId":53220,"journal":{"name":"Frontiers in Mechanical Engineering","volume":"1 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Modeling and Predicting Heavy-Duty Vehicle Engine-Out and Tailpipe Nitrogen Oxide (NOx) Emissions Using Deep Learning\",\"authors\":\"R. Pillai, V. Triantopoulos, A. Berahas, Matthew J. Brusstar, Ruonan Sun, Tim A. Nevius, A. Boehman\",\"doi\":\"10.3389/fmech.2022.840310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As emissions regulations for transportation become stricter, it is increasingly important to develop accurate nitrogen oxide (NO x ) emissions models for heavy-duty vehicles. However, estimation of transient NO x emissions using physics-based models is challenging due to its highly dynamic nature, which arises from the complex interactions between power demand, engine operation, and exhaust aftertreatment efficiency. As an alternative to physics-based models, a multi-dimensional data-driven approach is proposed as a framework to estimate NO x emissions across an extensive set of representative engine and exhaust aftertreatment system operating conditions. This paper employs Deep Neural Networks (DNN) to develop two models, an engine-out NO x and a tailpipe NO x model, to predict heavy-duty vehicle NO x emissions. The DNN models were developed using variables that are available from On-board Diagnostics from two datasets, an engine dynamometer and a chassis dynamometer dataset. Results from trained DNN models using the engine dynamometer dataset showed that the proposed approach can predict NO x emissions with high accuracy, where R 2 scores are higher than 0.99 for both engine-out and tailpipe NO x models on cold/hot Federal Test Procedure (FTP) and Ramped Mode Cycle (RMC) data. Similarly, the engine-out and tailpipe NO x models using the chassis dynamometer dataset achieved R 2 scores of 0.97 and 0.93, respectively. All models developed in this study have a mean absolute error percentage of approximately 1% relative to maximum NO x in the datasets, which is comparable to that of physical NO x emissions measurement analyzers. The input feature importance studies conducted in this work indicate that high accuracy DNN models (R 2 = 0.92–0.95) could be developed by utilizing minimal significant engine and aftertreatment inputs. This study also demonstrates that DNN NO x emissions models can be very effective tools for fault detection in Selective Catalytic Reduction (SCR) systems.\",\"PeriodicalId\":53220,\"journal\":{\"name\":\"Frontiers in Mechanical Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fmech.2022.840310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fmech.2022.840310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Modeling and Predicting Heavy-Duty Vehicle Engine-Out and Tailpipe Nitrogen Oxide (NOx) Emissions Using Deep Learning
As emissions regulations for transportation become stricter, it is increasingly important to develop accurate nitrogen oxide (NO x ) emissions models for heavy-duty vehicles. However, estimation of transient NO x emissions using physics-based models is challenging due to its highly dynamic nature, which arises from the complex interactions between power demand, engine operation, and exhaust aftertreatment efficiency. As an alternative to physics-based models, a multi-dimensional data-driven approach is proposed as a framework to estimate NO x emissions across an extensive set of representative engine and exhaust aftertreatment system operating conditions. This paper employs Deep Neural Networks (DNN) to develop two models, an engine-out NO x and a tailpipe NO x model, to predict heavy-duty vehicle NO x emissions. The DNN models were developed using variables that are available from On-board Diagnostics from two datasets, an engine dynamometer and a chassis dynamometer dataset. Results from trained DNN models using the engine dynamometer dataset showed that the proposed approach can predict NO x emissions with high accuracy, where R 2 scores are higher than 0.99 for both engine-out and tailpipe NO x models on cold/hot Federal Test Procedure (FTP) and Ramped Mode Cycle (RMC) data. Similarly, the engine-out and tailpipe NO x models using the chassis dynamometer dataset achieved R 2 scores of 0.97 and 0.93, respectively. All models developed in this study have a mean absolute error percentage of approximately 1% relative to maximum NO x in the datasets, which is comparable to that of physical NO x emissions measurement analyzers. The input feature importance studies conducted in this work indicate that high accuracy DNN models (R 2 = 0.92–0.95) could be developed by utilizing minimal significant engine and aftertreatment inputs. This study also demonstrates that DNN NO x emissions models can be very effective tools for fault detection in Selective Catalytic Reduction (SCR) systems.