基于人工神经网络的智能制造线材放电加工参数预测评估

Itagi Vijayakumar Manoj, Sannayellappa Narendranath, P. M. Mashinini, Hargovind Soni, S. Rab, Shadab Ahmad, Ahatsham Hayat
{"title":"基于人工神经网络的智能制造线材放电加工参数预测评估","authors":"Itagi Vijayakumar Manoj, Sannayellappa Narendranath, P. M. Mashinini, Hargovind Soni, S. Rab, Shadab Ahmad, Ahatsham Hayat","doi":"10.1515/pjbr-2022-0118","DOIUrl":null,"url":null,"abstract":"Abstract Artificial intelligence (AI), robotics, cybersecurity, the Industrial Internet of Things, and blockchain are some of the technologies and solutions that are combined to produce “smart manufacturing,” which is used to optimize manufacturing processes by creating and/or accepting data. In manufacturing, spark erosion technique such as wire electric discharge machining (WEDM) is a process that machines different hard-to-cut alloys. It is regarded as the solution for cutting intricate parts and materials that are resistant to conventional machining techniques or are required by design. In the present study, holes of different radii, i.e. 1, 3, and 5 mm, have been cut on Nickelvac-HX. Tapering in WEDM is a delicate process to avoid disadvantages such as wire break, wire bend, wire friction, guide wear, and insufficient flushing. Taper angles viz. 0°, 15°, and 30° were obtained from a unique fixture to get holes at different angles. The study also shows the influence of taper angles on the part geometry and area of the holes. Next, the artificial neural network (ANN) technique is implemented for the parametric result prediction. The findings were in good agreement with the experimental data, supporting the viability of the ANN approach for the evaluation of the manufacturing process. The findings in this research provide as a reference to the potential of AI-based assessment in smart manufacturing processes and as a design tool in many manufacturing-related fields.","PeriodicalId":90037,"journal":{"name":"Paladyn : journal of behavioral robotics","volume":"26 6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial neural network-based prediction assessment of wire electric discharge machining parameters for smart manufacturing\",\"authors\":\"Itagi Vijayakumar Manoj, Sannayellappa Narendranath, P. M. Mashinini, Hargovind Soni, S. Rab, Shadab Ahmad, Ahatsham Hayat\",\"doi\":\"10.1515/pjbr-2022-0118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Artificial intelligence (AI), robotics, cybersecurity, the Industrial Internet of Things, and blockchain are some of the technologies and solutions that are combined to produce “smart manufacturing,” which is used to optimize manufacturing processes by creating and/or accepting data. In manufacturing, spark erosion technique such as wire electric discharge machining (WEDM) is a process that machines different hard-to-cut alloys. It is regarded as the solution for cutting intricate parts and materials that are resistant to conventional machining techniques or are required by design. In the present study, holes of different radii, i.e. 1, 3, and 5 mm, have been cut on Nickelvac-HX. Tapering in WEDM is a delicate process to avoid disadvantages such as wire break, wire bend, wire friction, guide wear, and insufficient flushing. Taper angles viz. 0°, 15°, and 30° were obtained from a unique fixture to get holes at different angles. The study also shows the influence of taper angles on the part geometry and area of the holes. Next, the artificial neural network (ANN) technique is implemented for the parametric result prediction. The findings were in good agreement with the experimental data, supporting the viability of the ANN approach for the evaluation of the manufacturing process. The findings in this research provide as a reference to the potential of AI-based assessment in smart manufacturing processes and as a design tool in many manufacturing-related fields.\",\"PeriodicalId\":90037,\"journal\":{\"name\":\"Paladyn : journal of behavioral robotics\",\"volume\":\"26 6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Paladyn : journal of behavioral robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/pjbr-2022-0118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paladyn : journal of behavioral robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/pjbr-2022-0118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)、机器人、网络安全、工业物联网和区块链是结合在一起产生“智能制造”的一些技术和解决方案,用于通过创建和/或接受数据来优化制造流程。在制造业中,火花侵蚀技术如线切割加工(WEDM)是一种加工不同难切削合金的工艺。它被认为是解决复杂的零件和材料,是抵抗传统的加工技术或设计要求。在本研究中,在Nickelvac-HX上切割了不同半径的孔,即1,3,5 mm。电火花线切割削尖是一种精细的工艺,可避免线材断裂、线材弯曲、线材摩擦、导轨磨损和冲刷不足等缺点。锥度角为0°,15°和30°,通过独特的夹具获得不同角度的孔。研究还表明了锥度角对零件几何形状和孔面积的影响。其次,采用人工神经网络(ANN)技术进行参数化结果预测。研究结果与实验数据很好地吻合,支持人工神经网络方法评估制造过程的可行性。本研究的发现为基于人工智能的评估在智能制造过程中的潜力提供了参考,并作为许多制造相关领域的设计工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial neural network-based prediction assessment of wire electric discharge machining parameters for smart manufacturing
Abstract Artificial intelligence (AI), robotics, cybersecurity, the Industrial Internet of Things, and blockchain are some of the technologies and solutions that are combined to produce “smart manufacturing,” which is used to optimize manufacturing processes by creating and/or accepting data. In manufacturing, spark erosion technique such as wire electric discharge machining (WEDM) is a process that machines different hard-to-cut alloys. It is regarded as the solution for cutting intricate parts and materials that are resistant to conventional machining techniques or are required by design. In the present study, holes of different radii, i.e. 1, 3, and 5 mm, have been cut on Nickelvac-HX. Tapering in WEDM is a delicate process to avoid disadvantages such as wire break, wire bend, wire friction, guide wear, and insufficient flushing. Taper angles viz. 0°, 15°, and 30° were obtained from a unique fixture to get holes at different angles. The study also shows the influence of taper angles on the part geometry and area of the holes. Next, the artificial neural network (ANN) technique is implemented for the parametric result prediction. The findings were in good agreement with the experimental data, supporting the viability of the ANN approach for the evaluation of the manufacturing process. The findings in this research provide as a reference to the potential of AI-based assessment in smart manufacturing processes and as a design tool in many manufacturing-related fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robot-assisted therapy for upper limb impairments in cerebral palsy: A scoping review and suggestions for future research Discrimination against robots: Discussing the ethics of social interactions and who is harmed Power quality enhancement of solar–wind grid connected system employing genetic-based ANFIS controller Control optimization of taper interference coupling system for large piston compressor in the smart industries Ultra-low latency communication technology for Augmented Reality application in mobile periphery computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1