基于机器学习的电池最佳运行模式实时预测与控制

Gonzague Henri, N. Lu, Carlos Carreio
{"title":"基于机器学习的电池最佳运行模式实时预测与控制","authors":"Gonzague Henri, N. Lu, Carlos Carreio","doi":"10.1109/TDC.2018.8440141","DOIUrl":null,"url":null,"abstract":"This paper introduces a machine learning approach for real-time battery optimal operation mode prediction in residential PV applications. First, from the historical data, the optimal battery operation mode for each operation interval is derived. Then, a best performing algorithm for the prediction of the optimal modes is obtained. Performances are tested with different number of features in the training test and different training lengths. Then, the features will be used to predict future operation mode in real-time operations. A comparison on bill savings is made with the model-predictive control approach using the residential load and PV data from the Pecan Street project website under the Hawaiian electricity rate. Simulation results show a 9 points improvement in performance.","PeriodicalId":6568,"journal":{"name":"2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","volume":"16 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Machine Learning Approach for Real-time Battery Optimal Operation Mode Prediction and Control\",\"authors\":\"Gonzague Henri, N. Lu, Carlos Carreio\",\"doi\":\"10.1109/TDC.2018.8440141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a machine learning approach for real-time battery optimal operation mode prediction in residential PV applications. First, from the historical data, the optimal battery operation mode for each operation interval is derived. Then, a best performing algorithm for the prediction of the optimal modes is obtained. Performances are tested with different number of features in the training test and different training lengths. Then, the features will be used to predict future operation mode in real-time operations. A comparison on bill savings is made with the model-predictive control approach using the residential load and PV data from the Pecan Street project website under the Hawaiian electricity rate. Simulation results show a 9 points improvement in performance.\",\"PeriodicalId\":6568,\"journal\":{\"name\":\"2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)\",\"volume\":\"16 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TDC.2018.8440141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDC.2018.8440141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文介绍了一种用于住宅光伏应用中实时预测电池最佳运行模式的机器学习方法。首先,从历史数据出发,推导出各运行区间的最佳电池运行模式。在此基础上,给出了预测最优模式的最佳算法。在训练测试中使用不同数量的特征和不同的训练长度来测试性能。然后,利用这些特征在实时操作中预测未来的操作模式。利用Pecan Street项目网站上的居民负荷和光伏数据,在夏威夷电价下,与模型预测控制方法进行了电费节约的比较。仿真结果表明,该方法的性能提高了9个点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Machine Learning Approach for Real-time Battery Optimal Operation Mode Prediction and Control
This paper introduces a machine learning approach for real-time battery optimal operation mode prediction in residential PV applications. First, from the historical data, the optimal battery operation mode for each operation interval is derived. Then, a best performing algorithm for the prediction of the optimal modes is obtained. Performances are tested with different number of features in the training test and different training lengths. Then, the features will be used to predict future operation mode in real-time operations. A comparison on bill savings is made with the model-predictive control approach using the residential load and PV data from the Pecan Street project website under the Hawaiian electricity rate. Simulation results show a 9 points improvement in performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Patterns in Failure Rate of LV Distribution Components Comparison of University Departments Regarding Their Area and Load Profile of an Existing Campus Design of a Flexible AC/DC-Link Aggregate Protection Response of Motor Loads in Commercial Buildings Hardware-in-the-Loop Test Bed and Test Methodology for Microgrid Controller Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1