S. Ghafari, Zeynab Baboli, S. Jorfi, Mehrnoosh Abtahi, R. Saeedi, R. Darvishi Cheshmeh Soltani, S. A. Mirzaee, A. Neisi
{"title":"表面活性剂增强海洋耐光细菌T7-AHV对正十六烷污染土壤的生物修复","authors":"S. Ghafari, Zeynab Baboli, S. Jorfi, Mehrnoosh Abtahi, R. Saeedi, R. Darvishi Cheshmeh Soltani, S. A. Mirzaee, A. Neisi","doi":"10.15255/CABEQ.2018.1465","DOIUrl":null,"url":null,"abstract":"A halo-tolerant bacterial strain Paenibacillus glucanolyticus sp. strain T7-AHV isolated\nfrom marine environment was used for bioremediation of n-hexadecane-contaminated\nsoil. Soil/water ratio, initial inoculums volume, surfactant addition, n-hexadecane concentration, and salinity were investigated. The possibility of biosurfactant production by isolated strain was also studied, and the results demonstrated that it was not a biosurfactant producer, based on measurement of the surface tension of culture broth. Both tween 80 and rhamnolipid enhanced the biodegradation of n-hexadecane significantly up to 44 and 46 %, respectively. A biodegradation rate of 39.7 % was observed at salinity level of up to 2 %, and the biodegradation efficiency decreased significantly at higher salinity concentrations. A natural hydrocarbon-contaminated soil sample with total petroleum hydrocarbon (TPH) concentration of 1437 mg kg–1 was subjected to bioremediation using the selected conditions of operational parameters, and a biodegradation rate of 22.1 % was obtained.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":"29 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2019-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Surfactant-enhanced Bioremediation of n-Hexadecane-contaminated Soil Using Halo-tolerant Bacteria Paenibacillus glucanolyticus sp. Strain T7-AHV Isolated from Marine Environment\",\"authors\":\"S. Ghafari, Zeynab Baboli, S. Jorfi, Mehrnoosh Abtahi, R. Saeedi, R. Darvishi Cheshmeh Soltani, S. A. Mirzaee, A. Neisi\",\"doi\":\"10.15255/CABEQ.2018.1465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A halo-tolerant bacterial strain Paenibacillus glucanolyticus sp. strain T7-AHV isolated\\nfrom marine environment was used for bioremediation of n-hexadecane-contaminated\\nsoil. Soil/water ratio, initial inoculums volume, surfactant addition, n-hexadecane concentration, and salinity were investigated. The possibility of biosurfactant production by isolated strain was also studied, and the results demonstrated that it was not a biosurfactant producer, based on measurement of the surface tension of culture broth. Both tween 80 and rhamnolipid enhanced the biodegradation of n-hexadecane significantly up to 44 and 46 %, respectively. A biodegradation rate of 39.7 % was observed at salinity level of up to 2 %, and the biodegradation efficiency decreased significantly at higher salinity concentrations. A natural hydrocarbon-contaminated soil sample with total petroleum hydrocarbon (TPH) concentration of 1437 mg kg–1 was subjected to bioremediation using the selected conditions of operational parameters, and a biodegradation rate of 22.1 % was obtained.\",\"PeriodicalId\":9765,\"journal\":{\"name\":\"Chemical and Biochemical Engineering Quarterly\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2019-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical and Biochemical Engineering Quarterly\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.15255/CABEQ.2018.1465\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biochemical Engineering Quarterly","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.15255/CABEQ.2018.1465","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Surfactant-enhanced Bioremediation of n-Hexadecane-contaminated Soil Using Halo-tolerant Bacteria Paenibacillus glucanolyticus sp. Strain T7-AHV Isolated from Marine Environment
A halo-tolerant bacterial strain Paenibacillus glucanolyticus sp. strain T7-AHV isolated
from marine environment was used for bioremediation of n-hexadecane-contaminated
soil. Soil/water ratio, initial inoculums volume, surfactant addition, n-hexadecane concentration, and salinity were investigated. The possibility of biosurfactant production by isolated strain was also studied, and the results demonstrated that it was not a biosurfactant producer, based on measurement of the surface tension of culture broth. Both tween 80 and rhamnolipid enhanced the biodegradation of n-hexadecane significantly up to 44 and 46 %, respectively. A biodegradation rate of 39.7 % was observed at salinity level of up to 2 %, and the biodegradation efficiency decreased significantly at higher salinity concentrations. A natural hydrocarbon-contaminated soil sample with total petroleum hydrocarbon (TPH) concentration of 1437 mg kg–1 was subjected to bioremediation using the selected conditions of operational parameters, and a biodegradation rate of 22.1 % was obtained.
期刊介绍:
The journal provides an international forum for presentation of original papers, reviews and discussions on the latest developments in chemical and biochemical engineering. The scope of the journal is wide and no limitation except relevance to chemical and biochemical engineering is required.
The criteria for the acceptance of papers are originality, quality of work and clarity of style. All papers are subject to reviewing by at least two international experts (blind peer review).
The language of the journal is English. Final versions of the manuscripts are subject to metric (SI units and IUPAC recommendations) and English language reviewing.
Editor and Editorial board make the final decision about acceptance of a manuscript.
Page charges are excluded.