直接,密集和可变形:基于模板的RGB视频非刚性3D重建

Rui Yu, Chris Russell, N. Campbell, L. Agapito
{"title":"直接,密集和可变形:基于模板的RGB视频非刚性3D重建","authors":"Rui Yu, Chris Russell, N. Campbell, L. Agapito","doi":"10.1109/ICCV.2015.111","DOIUrl":null,"url":null,"abstract":"In this paper we tackle the problem of capturing the dense, detailed 3D geometry of generic, complex non-rigid meshes using a single RGB-only commodity video camera and a direct approach. While robust and even real-time solutions exist to this problem if the observed scene is static, for non-rigid dense shape capture current systems are typically restricted to the use of complex multi-camera rigs, take advantage of the additional depth channel available in RGB-D cameras, or deal with specific shapes such as faces or planar surfaces. In contrast, our method makes use of a single RGB video as input, it can capture the deformations of generic shapes, and the depth estimation is dense, per-pixel and direct. We first compute a dense 3D template of the shape of the object, using a short rigid sequence, and subsequently perform online reconstruction of the non-rigid mesh as it evolves over time. Our energy optimization approach minimizes a robust photometric cost that simultaneously estimates the temporal correspondences and 3D deformations with respect to the template mesh. In our experimental evaluation we show a range of qualitative results on novel datasets, we compare against an existing method that requires multi-frame optical flow, and perform a quantitative evaluation against other template-based approaches on a ground truth dataset.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"39 1","pages":"918-926"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":"{\"title\":\"Direct, Dense, and Deformable: Template-Based Non-rigid 3D Reconstruction from RGB Video\",\"authors\":\"Rui Yu, Chris Russell, N. Campbell, L. Agapito\",\"doi\":\"10.1109/ICCV.2015.111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we tackle the problem of capturing the dense, detailed 3D geometry of generic, complex non-rigid meshes using a single RGB-only commodity video camera and a direct approach. While robust and even real-time solutions exist to this problem if the observed scene is static, for non-rigid dense shape capture current systems are typically restricted to the use of complex multi-camera rigs, take advantage of the additional depth channel available in RGB-D cameras, or deal with specific shapes such as faces or planar surfaces. In contrast, our method makes use of a single RGB video as input, it can capture the deformations of generic shapes, and the depth estimation is dense, per-pixel and direct. We first compute a dense 3D template of the shape of the object, using a short rigid sequence, and subsequently perform online reconstruction of the non-rigid mesh as it evolves over time. Our energy optimization approach minimizes a robust photometric cost that simultaneously estimates the temporal correspondences and 3D deformations with respect to the template mesh. In our experimental evaluation we show a range of qualitative results on novel datasets, we compare against an existing method that requires multi-frame optical flow, and perform a quantitative evaluation against other template-based approaches on a ground truth dataset.\",\"PeriodicalId\":6633,\"journal\":{\"name\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"39 1\",\"pages\":\"918-926\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"87\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2015.111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87

摘要

在本文中,我们解决了使用单一的rgb商用摄像机和直接方法捕获通用的、复杂的非刚性网格的密集、详细的3D几何形状的问题。如果观察到的场景是静态的,则存在健壮甚至实时的解决方案,但对于非刚性密集形状捕获,当前系统通常仅限于使用复杂的多相机平台,利用RGB-D相机中可用的额外深度通道,或处理特定形状,如面或平面。相比之下,我们的方法使用单个RGB视频作为输入,它可以捕获一般形状的变形,并且深度估计是密集的,每像素和直接的。我们首先使用短刚性序列计算对象形状的密集3D模板,然后随着时间的推移对非刚性网格进行在线重建。我们的能量优化方法最大限度地减少了稳健的光度成本,同时估计了相对于模板网格的时间对应和3D变形。在我们的实验评估中,我们在新数据集上展示了一系列定性结果,我们与需要多帧光流的现有方法进行了比较,并在地面真实数据集上对其他基于模板的方法进行了定量评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Direct, Dense, and Deformable: Template-Based Non-rigid 3D Reconstruction from RGB Video
In this paper we tackle the problem of capturing the dense, detailed 3D geometry of generic, complex non-rigid meshes using a single RGB-only commodity video camera and a direct approach. While robust and even real-time solutions exist to this problem if the observed scene is static, for non-rigid dense shape capture current systems are typically restricted to the use of complex multi-camera rigs, take advantage of the additional depth channel available in RGB-D cameras, or deal with specific shapes such as faces or planar surfaces. In contrast, our method makes use of a single RGB video as input, it can capture the deformations of generic shapes, and the depth estimation is dense, per-pixel and direct. We first compute a dense 3D template of the shape of the object, using a short rigid sequence, and subsequently perform online reconstruction of the non-rigid mesh as it evolves over time. Our energy optimization approach minimizes a robust photometric cost that simultaneously estimates the temporal correspondences and 3D deformations with respect to the template mesh. In our experimental evaluation we show a range of qualitative results on novel datasets, we compare against an existing method that requires multi-frame optical flow, and perform a quantitative evaluation against other template-based approaches on a ground truth dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Listening with Your Eyes: Towards a Practical Visual Speech Recognition System Using Deep Boltzmann Machines Self-Calibration of Optical Lenses Single Image Pop-Up from Discriminatively Learned Parts Multi-task Recurrent Neural Network for Immediacy Prediction Low-Rank Tensor Approximation with Laplacian Scale Mixture Modeling for Multiframe Image Denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1