{"title":"直接,密集和可变形:基于模板的RGB视频非刚性3D重建","authors":"Rui Yu, Chris Russell, N. Campbell, L. Agapito","doi":"10.1109/ICCV.2015.111","DOIUrl":null,"url":null,"abstract":"In this paper we tackle the problem of capturing the dense, detailed 3D geometry of generic, complex non-rigid meshes using a single RGB-only commodity video camera and a direct approach. While robust and even real-time solutions exist to this problem if the observed scene is static, for non-rigid dense shape capture current systems are typically restricted to the use of complex multi-camera rigs, take advantage of the additional depth channel available in RGB-D cameras, or deal with specific shapes such as faces or planar surfaces. In contrast, our method makes use of a single RGB video as input, it can capture the deformations of generic shapes, and the depth estimation is dense, per-pixel and direct. We first compute a dense 3D template of the shape of the object, using a short rigid sequence, and subsequently perform online reconstruction of the non-rigid mesh as it evolves over time. Our energy optimization approach minimizes a robust photometric cost that simultaneously estimates the temporal correspondences and 3D deformations with respect to the template mesh. In our experimental evaluation we show a range of qualitative results on novel datasets, we compare against an existing method that requires multi-frame optical flow, and perform a quantitative evaluation against other template-based approaches on a ground truth dataset.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"39 1","pages":"918-926"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":"{\"title\":\"Direct, Dense, and Deformable: Template-Based Non-rigid 3D Reconstruction from RGB Video\",\"authors\":\"Rui Yu, Chris Russell, N. Campbell, L. Agapito\",\"doi\":\"10.1109/ICCV.2015.111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we tackle the problem of capturing the dense, detailed 3D geometry of generic, complex non-rigid meshes using a single RGB-only commodity video camera and a direct approach. While robust and even real-time solutions exist to this problem if the observed scene is static, for non-rigid dense shape capture current systems are typically restricted to the use of complex multi-camera rigs, take advantage of the additional depth channel available in RGB-D cameras, or deal with specific shapes such as faces or planar surfaces. In contrast, our method makes use of a single RGB video as input, it can capture the deformations of generic shapes, and the depth estimation is dense, per-pixel and direct. We first compute a dense 3D template of the shape of the object, using a short rigid sequence, and subsequently perform online reconstruction of the non-rigid mesh as it evolves over time. Our energy optimization approach minimizes a robust photometric cost that simultaneously estimates the temporal correspondences and 3D deformations with respect to the template mesh. In our experimental evaluation we show a range of qualitative results on novel datasets, we compare against an existing method that requires multi-frame optical flow, and perform a quantitative evaluation against other template-based approaches on a ground truth dataset.\",\"PeriodicalId\":6633,\"journal\":{\"name\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"39 1\",\"pages\":\"918-926\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"87\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2015.111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Direct, Dense, and Deformable: Template-Based Non-rigid 3D Reconstruction from RGB Video
In this paper we tackle the problem of capturing the dense, detailed 3D geometry of generic, complex non-rigid meshes using a single RGB-only commodity video camera and a direct approach. While robust and even real-time solutions exist to this problem if the observed scene is static, for non-rigid dense shape capture current systems are typically restricted to the use of complex multi-camera rigs, take advantage of the additional depth channel available in RGB-D cameras, or deal with specific shapes such as faces or planar surfaces. In contrast, our method makes use of a single RGB video as input, it can capture the deformations of generic shapes, and the depth estimation is dense, per-pixel and direct. We first compute a dense 3D template of the shape of the object, using a short rigid sequence, and subsequently perform online reconstruction of the non-rigid mesh as it evolves over time. Our energy optimization approach minimizes a robust photometric cost that simultaneously estimates the temporal correspondences and 3D deformations with respect to the template mesh. In our experimental evaluation we show a range of qualitative results on novel datasets, we compare against an existing method that requires multi-frame optical flow, and perform a quantitative evaluation against other template-based approaches on a ground truth dataset.