LTE与LTE- a网络切换决策的预测算法

W. Benaatou, A. Latif, V. Pla
{"title":"LTE与LTE- a网络切换决策的预测算法","authors":"W. Benaatou, A. Latif, V. Pla","doi":"10.18080/jtde.v9n4.370","DOIUrl":null,"url":null,"abstract":"A heterogeneous wireless network needs to maintain seamless mobility and service continuity; for this reason, we have proposed an approach based on the combination of particle swarm optimization (PSO) and an adaptive neuro-fuzzy inference system (ANFIS) to forecast a handover during a movement of a mobile terminal from a serving base station to target base station. Additionally, the handover decision is made by considering several parameters, such as peak data rate, latency, packet loss, and power consumption, to select the best network for handover from an LTE to an LTE-A network. The performance efficiency of the new hybrid approach is determined by computing different statistical parameters, such as root mean square error (RMSE), coefficient of determination (R2), mean square error (MSE), and error standard deviation (StD). The execution of the proposed approach has been performed using MATLAB software. The simulation results show that the hybrid PSO-ANFIS model has better performance than other approaches in terms of prediction accuracy and reduction of handover latency and the power consumption in the network.\n ","PeriodicalId":37752,"journal":{"name":"Australian Journal of Telecommunications and the Digital Economy","volume":"11 12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predictive Algorithm for Handover Decisions between LTE and LTE-A Networks\",\"authors\":\"W. Benaatou, A. Latif, V. Pla\",\"doi\":\"10.18080/jtde.v9n4.370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A heterogeneous wireless network needs to maintain seamless mobility and service continuity; for this reason, we have proposed an approach based on the combination of particle swarm optimization (PSO) and an adaptive neuro-fuzzy inference system (ANFIS) to forecast a handover during a movement of a mobile terminal from a serving base station to target base station. Additionally, the handover decision is made by considering several parameters, such as peak data rate, latency, packet loss, and power consumption, to select the best network for handover from an LTE to an LTE-A network. The performance efficiency of the new hybrid approach is determined by computing different statistical parameters, such as root mean square error (RMSE), coefficient of determination (R2), mean square error (MSE), and error standard deviation (StD). The execution of the proposed approach has been performed using MATLAB software. The simulation results show that the hybrid PSO-ANFIS model has better performance than other approaches in terms of prediction accuracy and reduction of handover latency and the power consumption in the network.\\n \",\"PeriodicalId\":37752,\"journal\":{\"name\":\"Australian Journal of Telecommunications and the Digital Economy\",\"volume\":\"11 12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Telecommunications and the Digital Economy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18080/jtde.v9n4.370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Telecommunications and the Digital Economy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18080/jtde.v9n4.370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 1

摘要

异构无线网络需要保持无缝移动性和业务连续性;为此,我们提出了一种基于粒子群优化(PSO)和自适应神经模糊推理系统(ANFIS)相结合的移动终端从服务基站移动到目标基站的切换预测方法。此外,通过考虑几个参数(如峰值数据速率、延迟、数据包丢失和功耗)来做出切换决策,以选择从LTE到LTE- a网络切换的最佳网络。通过计算不同的统计参数,如均方根误差(RMSE)、决定系数(R2)、均方误差(MSE)和误差标准偏差(StD)来确定新混合方法的性能效率。利用MATLAB软件对所提出的方法进行了执行。仿真结果表明,混合PSO-ANFIS模型在预测精度、降低切换延迟和网络功耗方面都优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predictive Algorithm for Handover Decisions between LTE and LTE-A Networks
A heterogeneous wireless network needs to maintain seamless mobility and service continuity; for this reason, we have proposed an approach based on the combination of particle swarm optimization (PSO) and an adaptive neuro-fuzzy inference system (ANFIS) to forecast a handover during a movement of a mobile terminal from a serving base station to target base station. Additionally, the handover decision is made by considering several parameters, such as peak data rate, latency, packet loss, and power consumption, to select the best network for handover from an LTE to an LTE-A network. The performance efficiency of the new hybrid approach is determined by computing different statistical parameters, such as root mean square error (RMSE), coefficient of determination (R2), mean square error (MSE), and error standard deviation (StD). The execution of the proposed approach has been performed using MATLAB software. The simulation results show that the hybrid PSO-ANFIS model has better performance than other approaches in terms of prediction accuracy and reduction of handover latency and the power consumption in the network.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
37
期刊介绍: The Journal of Telecommunications and the Digital Economy (JTDE) is an international, open-access, high quality, peer reviewed journal, indexed by Scopus and Google Scholar, covering innovative research and practice in Telecommunications, Digital Economy and Applications. The mission of JTDE is to further through publication the objective of advancing learning, knowledge and research worldwide. The JTDE publishes peer reviewed papers that may take the following form: *Research Paper - a paper making an original contribution to engineering knowledge. *Special Interest Paper – a report on significant aspects of a major or notable project. *Review Paper for specialists – an overview of a relevant area intended for specialists in the field covered. *Review Paper for non-specialists – an overview of a relevant area suitable for a reader with an electrical/electronics background. *Public Policy Discussion - a paper that identifies or discusses public policy and includes investigation of legislation, regulation and what is happening around the world including best practice *Tutorial Paper – a paper that explains an important subject or clarifies the approach to an area of design or investigation. *Technical Note – a technical note or letter to the Editors that is not sufficiently developed or extensive in scope to constitute a full paper. *Industry Case Study - a paper that provides details of industry practices utilising a case study to provide an understanding of what is occurring and how the outcomes have been achieved. *Discussion – a contribution to discuss a published paper to which the original author''s response will be sought. Historical - a paper covering a historical topic related to telecommunications or the digital economy.
期刊最新文献
Blockchain Technology for Tourism Post COVID-19 ICT-driven Transparency: Empirical Evidence from Selected Asian Countries Big Data Analytics in Tracking COVID-19 Spread Utilizing Google Location Data Harry S. Wragge AM (1929-2023) Phishing Message Detection Based on Keyword Matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1