一种新的基于NOR闪存阵列的高计算速度和高能效的卷积计算范式

Runze Han, P. Huang, Y. Xiang, C. Liu, Zhen Dong, Z. Su, Y. B. Liu, L. Liu, X. Liu, Jinfeng Kang
{"title":"一种新的基于NOR闪存阵列的高计算速度和高能效的卷积计算范式","authors":"Runze Han, P. Huang, Y. Xiang, C. Liu, Zhen Dong, Z. Su, Y. B. Liu, L. Liu, X. Liu, Jinfeng Kang","doi":"10.1109/ISCAS.2018.8351030","DOIUrl":null,"url":null,"abstract":"A novel convolution computing paradigm based on the NOR Flash Array is proposed. Significant improvements both in computing speed and energy consumption are achieved compared to CMOS-based logic computing paradigms. Regarding to the feature extraction task from a 256×256 image, the computing speed of 3.9×104 frame per second (fps) and the energy consumption of 0.057nJ/pixel are achieved using the proposed computing paradigm.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"68 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Novel Convolution Computing Paradigm Based on NOR Flash Array with High Computing Speed and Energy Efficient\",\"authors\":\"Runze Han, P. Huang, Y. Xiang, C. Liu, Zhen Dong, Z. Su, Y. B. Liu, L. Liu, X. Liu, Jinfeng Kang\",\"doi\":\"10.1109/ISCAS.2018.8351030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel convolution computing paradigm based on the NOR Flash Array is proposed. Significant improvements both in computing speed and energy consumption are achieved compared to CMOS-based logic computing paradigms. Regarding to the feature extraction task from a 256×256 image, the computing speed of 3.9×104 frame per second (fps) and the energy consumption of 0.057nJ/pixel are achieved using the proposed computing paradigm.\",\"PeriodicalId\":6569,\"journal\":{\"name\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"volume\":\"68 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2018.8351030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2018.8351030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种新的基于NOR闪存阵列的卷积计算范式。与基于cmos的逻辑计算范式相比,在计算速度和能耗方面都取得了显著的改进。对于256×256图像的特征提取任务,采用该计算范式实现了3.9×104帧/秒(fps)的计算速度和0.057nJ/像素的能量消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Convolution Computing Paradigm Based on NOR Flash Array with High Computing Speed and Energy Efficient
A novel convolution computing paradigm based on the NOR Flash Array is proposed. Significant improvements both in computing speed and energy consumption are achieved compared to CMOS-based logic computing paradigms. Regarding to the feature extraction task from a 256×256 image, the computing speed of 3.9×104 frame per second (fps) and the energy consumption of 0.057nJ/pixel are achieved using the proposed computing paradigm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra-Low Power Wide-Dynamic-Range Universal Interface for Capacitive and Resistive Sensors An Energy-Efficient 13-bit Zero-Crossing ΔΣ Capacitance-to-Digital Converter with 1 pF-to-10 nF Sensing Range Power Optimized Comparator Selecting Method For Stochastic ADC Brain-inspired recurrent neural network with plastic RRAM synapses On the Use of Approximate Multipliers in LMS Adaptive Filters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1